Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
J Blood Disord, v. 10, n. 1, 1074, jun. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5371

RESUMO

Background: Sensitivity of classical coagulation assays by using mammalian plasmas to pro‐ and anticoagulant compounds includ ing venom or toxins occurs on a microscale level (micrograms). Al though it improves responses to agonists, recalcification triggers a relatively fast thrombin formation process. The Recalcification Time (RT) of factor XII- deficient Chicken Plasma (CP) is comparatively long (≥1800 seconds) when compared to human plasma or others. Our objective was to compare its sensitivity with that presented by human plasma samples to Unfractionated Heparin (UH), a pro totype anticoagulant compound, under similar conditions through rotational thromboelastometry. Methods: To find doses of UH sufficient enough to prolong the Clotting Time (CT) parameter of these activated plasmas to values within their normal RT ranges. Results: In total, 0.0065±0.0009 IU of UH (n=6) was detected in 260µL of CP samples, but only 0.125±0.012 IU of UH was sufficient to induce a similar effect in activated human plasma samples. Conclusion: The higher sensitivity of CP to anticoagulants could be useful for (a) detection of anticoagulant compounds in substanc es of unknown origin; (b) purification procedures of anticoagulant toxins from crude animal venoms and (c) determination of relative potencies of agonists and their selective antagonists such as phar maceutical agents, antivenoms or natural inhibitors of venom tox ins with a better result in kinetic clothing parameters

3.
Biomed Pharmacother ; 149: 112920, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36068779

RESUMO

Since the COVID-19 pandemic started, mesenchymal stromal cells (MSC) appeared as a therapeutic option to reduce the over-activated inflammatory response and promote recovery of lung damage. Most clinical studies use intravenous injection for MSC delivery, raising several concerns of thrombogenic risk due to MSC procoagulant activity (PCA) linked to the expression of tissue factor (TF/CD142). This is the first study that demonstrated procoagulant activity of TF+ human immature dental pulp stromal cells (hIDPSC, NestaCell® product) with the percentage of TF+ cells varied from 0.2% to 63.9% in plasma of healthy donors and COVID-19 heparin-treated patients. Thrombogenic risk of TF+ hIDPSCs was evaluated by rotational thromboelastometry (in vitro) and in critically ill COVID-19 patients (clinical trial). We showed that the thromboelastography is not enough to predict the risk of TF+ MSC therapies. Using TF-negative HUVEC cells, we demonstrated that TF is not a unique factor responsible for the cell's procoagulant activity. However, heparin treatment minimizes MSC procoagulant (in vitro). We also showed that the intravenous infusion of hIDPSCs with prophylactic enoxaparin administration in moderate to critically ill COVID-19 patients did not change the values of D-dimer, neither in the PT and PTT times. Our COVID-19 clinical study measured and selected the therapeutic cells with low TF (less than 25% of TF+ hIDPSCs). Our data indicate that the concomitant administration of enoxaparin and low TF-loaded is safe even for critically ill COVID-19 patients.


Assuntos
COVID-19 , Tromboplastina , Terapia Baseada em Transplante de Células e Tecidos , Ensaios Clínicos como Assunto , Estado Terminal , Enoxaparina/farmacologia , Enoxaparina/uso terapêutico , Heparina , Humanos , Pandemias , Tromboplastina/metabolismo
4.
Toxins, v. 14, n. 543, ago. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4475

RESUMO

The evolution of snake venoms resulted in multigene toxin families that code for structurally similar isoforms eventually harboring distinct functions. PLA2s are dominant toxins in viper venoms, and little is known about the impact of their diversity on human envenomings and neutralization by antivenoms. Here, we show the isolation of three distinct PLA2s from B. atrox venom. FA1 is a Lys-49 homologue, and FA3 and FA4 are catalytic Asp-49 PLA2s. FA1 and FA3 are basic myotoxic proteins, while FA4 is an acid non-myotoxic PLA2. FA3 was the most potent toxin, inducing higher levels of edema, inflammatory nociception, indirect hemolysis, and anticoagulant activity on human, rat, and chicken plasmas. FA4 presented lower anticoagulant activity, and FA1 had only a slight effect on human and rat plasmas. PLA2s presented differential reactivities with antivenoms, with an emphasis on FA3, which was not recognized or neutralized by the antivenoms used in this study. Our findings reveal the functional and antigenic diversity among PLA2s from B. atrox venom, highlighting the importance of assessing venom variability for understanding human envenomations and treatment with antivenoms, particularly evident here as the antivenom fails to recognize FA3, the most active multifunctional toxin described.

5.
Biomed Pharmacother, v. 149, 112920, maio. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4307

RESUMO

Since the COVID-19 pandemic started, mesenchymal stromal cells (MSC) appeared as a therapeutic option to reduce the over-activated inflammatory response and promote recovery of lung damage. Most clinical studies use intravenous injection for MSC delivery, raising several concerns of thrombogenic risk due to MSC procoagulant activity (PCA) linked to the expression of tissue factor (TF/CD142). This is the first study that demonstrated procoagulant activity of TF+ human immature dental pulp stromal cells (hIDPSC, NestaCell® product) with the percentage of TF+ cells varied from 0.2% to 63.9% in plasma of healthy donors and COVID-19 heparin-treated patients. Thrombogenic risk of TF+ hIDPSCs was evaluated by rotational thromboelastometry (in vitro) and in critically ill COVID-19 patients (clinical trial). We showed that the thromboelastography is not enough to predict the risk of TF+ MSC therapies. Using TF-negative HUVEC cells, we demonstrated that TF is not a unique factor responsible for the cell's procoagulant activity. However, heparin treatment minimizes MSC procoagulant (in vitro). We also showed that the intravenous infusion of hIDPSCs with prophylactic enoxaparin administration in moderate to critically ill COVID-19 patients did not change the values of D-dimer, neither in the PT and PTT times. Our COVID-19 clinical study measured and selected the therapeutic cells with low TF (less than 25% of TF+ hIDPSCs). Our data indicate that the concomitant administration of enoxaparin and low TF-loaded is safe even for critically ill COVID-19 patients.

6.
Toxins, v. 13, n. 11, 814, nov. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4016

RESUMO

Differences in snake venom composition occur across all taxonomic levels and it has been argued that this variation represents an adaptation that has evolved to facilitate the capture and digestion of prey and evasion of predators. Bothrops atrox is a terrestrial pitviper that is distributed across the Amazon region, where it occupies different habitats. Using statistical analyses and functional assays that incorporate individual variation, we analyzed the individual venom variability in B. atrox snakes from four different habitats (forest, pasture, degraded area, and floodplain) in and around the Amazon River in Brazil. We observed venom differentiation between spatially distinct B. atrox individuals from the different habitats, with venom variation due to both common (high abundance) and rare (low abundance) proteins. Moreover, differences in the composition of the venoms resulted in individual variability in functionality and heterogeneity in the lethality to mammals and birds, particularly among the floodplain snakes. Taken together, the data obtained from individual venoms of B. atrox snakes, captured in different habitats from the Brazilian Amazon, support the hypothesis that the differential distribution of protein isoforms results in functional distinctiveness and the ability of snakes with different venoms to have variable toxic effects on different prey.

7.
Toxins ; 12(2): 79, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17581

RESUMO

The sensitivity of vertebrate citrated plasma to pro- and anticoagulant venom or toxins occurs on a microscale level (micrograms). Although it improves responses to agonists, recalcification triggers a relatively fast thrombin formation process in mammalian plasma. As it has a natural factor XII deficiency, the recalcification time (RT) of chicken plasma (CP) is comparatively long [= 1800 seconds (s)]. Our objective was to compare the ability of bee venom phospholipase A2 (bvPLA2) to neutralize clot formation induced by an activator of coagulation (the aPTT clot) in recalcified human and chicken plasmas, through rotational thromboelastometry. The strategy used in this study was to find doses of bvPLA2 that were sufficient enough to prolong the clotting time (CT) of these activated plasmas to values within their normal RT range. The CT of CP was prolonged in a dose-dependent manner by bvPLA2, with 17 ± 2.8 ng (n = 6) being sufficient to displace the CT values of the activated samples to = 1800 s. Only amounts up to 380 ± 41 ng (n = 6) of bvPLA2 induced the same effect in activated human plasma samples. In conclusion, the high sensitivity of CP to agonists and rotational thromboelastometry could be useful. For example, during screening procedures for assaying the effects of toxins in several stages of the coagulation pathway, such as clot initiation, formation, stability, strength, or dissolution

8.
Toxins, v. 12, n. 2, 79, jan. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2996

RESUMO

The sensitivity of vertebrate citrated plasma to pro- and anticoagulant venom or toxins occurs on a microscale level (micrograms). Although it improves responses to agonists, recalcification triggers a relatively fast thrombin formation process in mammalian plasma. As it has a natural factor XII deficiency, the recalcification time (RT) of chicken plasma (CP) is comparatively long [= 1800 seconds (s)]. Our objective was to compare the ability of bee venom phospholipase A2 (bvPLA2) to neutralize clot formation induced by an activator of coagulation (the aPTT clot) in recalcified human and chicken plasmas, through rotational thromboelastometry. The strategy used in this study was to find doses of bvPLA2 that were sufficient enough to prolong the clotting time (CT) of these activated plasmas to values within their normal RT range. The CT of CP was prolonged in a dose-dependent manner by bvPLA2, with 17 ± 2.8 ng (n = 6) being sufficient to displace the CT values of the activated samples to = 1800 s. Only amounts up to 380 ± 41 ng (n = 6) of bvPLA2 induced the same effect in activated human plasma samples. In conclusion, the high sensitivity of CP to agonists and rotational thromboelastometry could be useful. For example, during screening procedures for assaying the effects of toxins in several stages of the coagulation pathway, such as clot initiation, formation, stability, strength, or dissolution

9.
Biomolecules ; 9(8): 382, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17201

RESUMO

Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1-/-) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.

10.
Toxicon ; 162: p. 9-14, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15883

RESUMO

The hepatocyte growth factor (HGF)/c-met pathway, which mainly consists of HGF activator (HGFA) and its substrate HGF, protects various types of cells via anti-apoptotic and anti-inflammatory signals. Thrombin is the main physiological activator of such plasmatic pathway, and increased plasma concentrations of HGF have been considered as a molecular marker for some pathological conditions, such as disseminated intravascular coagulation. Since thrombin generation is often linked to tissue injury, and these events are common during snake venom-induced consumption coagulopathies (VICC), our goals were to examine whether Bothrops jararaca venom (Bjv), which induces VICC in vivo: (i) activates the HGF/c-met pathway in vivo and (ii) cleaves zymogen forms of HGFA and HGF (proHGFA and proHGF, respectively) in vitro. Two experimental groups (n = 6, each) of male adult Wistar rats were subcutaneously injected with 500?µL of 0.9% NaCl solution (control) or sub-lethal doses (1.6 mg/kg) of Bjv. Three hours after envenomation, whole blood samples were collected from the carotid arteries to evaluate relevant coagulation parameters using rotational thromboelastometry and fibrinogen level (colorimetric assay). Additionally, the plasma concentration of HGF was assayed (ELISA). Thromboelastometric assays showed that blood clotting and fibrin polymerization were severely impaired 3 h after Bjv injection. Total plasma HGF concentrations were almost 6-fold higher in the Bjv-injected group (410.0 ± 91) compared with control values (68 ± 18 pg/mL, p < 0.05). Western blotting assay showed that Bjv processed proHGFA and proHGF, generating bands resembling those generated by thrombin and kallikrein, respectively. In contrast to the serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF), the metalloprotease inhibitor ethylenediaminetetraacetic acid disodium salt (Na2-EDTA) strongly reduced the ability of Bjv to process proHGFA and generated one active band similar to that of thrombin. Since Bjv contains prothrombin and factor X activators, increased intravascular thrombin formation might partly explain the increased HGF levels after bothropic envenomation. In conclusion, these findings suggest that snake venom metalloproteases may be determinant for elevation of plasma levels of HGF in rats experimentally envenomated with Bjv.

11.
Biomolecules, v. 9, n. 8, p. 382, aug. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2839

RESUMO

Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1-/-) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.

12.
Toxicon, v. 162, p. 9-14, abr. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2695

RESUMO

The hepatocyte growth factor (HGF)/c-met pathway, which mainly consists of HGF activator (HGFA) and its substrate HGF, protects various types of cells via anti-apoptotic and anti-inflammatory signals. Thrombin is the main physiological activator of such plasmatic pathway, and increased plasma concentrations of HGF have been considered as a molecular marker for some pathological conditions, such as disseminated intravascular coagulation. Since thrombin generation is often linked to tissue injury, and these events are common during snake venom-induced consumption coagulopathies (VICC), our goals were to examine whether Bothrops jararaca venom (Bjv), which induces VICC in vivo: (i) activates the HGF/c-met pathway in vivo and (ii) cleaves zymogen forms of HGFA and HGF (proHGFA and proHGF, respectively) in vitro. Two experimental groups (n = 6, each) of male adult Wistar rats were subcutaneously injected with 500?µL of 0.9% NaCl solution (control) or sub-lethal doses (1.6 mg/kg) of Bjv. Three hours after envenomation, whole blood samples were collected from the carotid arteries to evaluate relevant coagulation parameters using rotational thromboelastometry and fibrinogen level (colorimetric assay). Additionally, the plasma concentration of HGF was assayed (ELISA). Thromboelastometric assays showed that blood clotting and fibrin polymerization were severely impaired 3 h after Bjv injection. Total plasma HGF concentrations were almost 6-fold higher in the Bjv-injected group (410.0 ± 91) compared with control values (68 ± 18 pg/mL, p < 0.05). Western blotting assay showed that Bjv processed proHGFA and proHGF, generating bands resembling those generated by thrombin and kallikrein, respectively. In contrast to the serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF), the metalloprotease inhibitor ethylenediaminetetraacetic acid disodium salt (Na2-EDTA) strongly reduced the ability of Bjv to process proHGFA and generated one active band similar to that of thrombin. Since Bjv contains prothrombin and factor X activators, increased intravascular thrombin formation might partly explain the increased HGF levels after bothropic envenomation. In conclusion, these findings suggest that snake venom metalloproteases may be determinant for elevation of plasma levels of HGF in rats experimentally envenomated with Bjv.

13.
Toxicon ; 148: p. 26-32, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15169

RESUMO

The assessment of the capacity of antivenoms to neutralize the lethal activity of snake venoms still relies on traditional rodent in vivo lethality assay. ED50 and LD50 assays require large quantities of venoms and antivenoms, and besides leading to animal suffering. Therefore, in vitro tests should be introduced for assessing antivenom neutralizing capacity in intermediary steps of antivenom production. This task is facilitated when one key lethal toxin is identified. A good example is crotoxin, a P-neurotoxin phospholipase A(2)-like toxin that presents anticoagulant activity in vitro and is responsible for the lethality of venoms of Crotalus durissus snakes. By using rotational thromboelastometry, we reported recently one sensitive coagulation assay for assessing relative potency of the anti-bothropic serum in neutralizing procoagulant activity of Bothrops jararaca venom upon recalcified factor-XII-deficient chicken plasma samples (CPS). In this study, we stablished conditions for determining relative potency of four batches of the anti-crotalic serum (ACS) (antagonist) in inactivating crotoxin anticoagulant activity in CPS (target) simultaneously treated with one classical activator of coagulation (agonists). The correlation coefficient (r) between values related the ACS potency in inactivating both in vitro crotoxin anticoagulant activity and the in vivo lethality of whole venom (ED50) was 0.94 (p value < 0.05). In conclusion, slowness in spontaneous thrombin/fibrin generation even after recalcification elicit time lapse sufficient for elaboration of one dose-response curve to pro-or anti-coagulant agonists in CPS. We propose this methodology as an alternative and sensitive assay for assessing antivenom neutralizing ability in plasma of immunized horses as well as for in-process quality control.

14.
Toxicon, v. 148, p. 26-32, jun. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2481

RESUMO

The assessment of the capacity of antivenoms to neutralize the lethal activity of snake venoms still relies on traditional rodent in vivo lethality assay. ED50 and LD50 assays require large quantities of venoms and antivenoms, and besides leading to animal suffering. Therefore, in vitro tests should be introduced for assessing antivenom neutralizing capacity in intermediary steps of antivenom production. This task is facilitated when one key lethal toxin is identified. A good example is crotoxin, a P-neurotoxin phospholipase A(2)-like toxin that presents anticoagulant activity in vitro and is responsible for the lethality of venoms of Crotalus durissus snakes. By using rotational thromboelastometry, we reported recently one sensitive coagulation assay for assessing relative potency of the anti-bothropic serum in neutralizing procoagulant activity of Bothrops jararaca venom upon recalcified factor-XII-deficient chicken plasma samples (CPS). In this study, we stablished conditions for determining relative potency of four batches of the anti-crotalic serum (ACS) (antagonist) in inactivating crotoxin anticoagulant activity in CPS (target) simultaneously treated with one classical activator of coagulation (agonists). The correlation coefficient (r) between values related the ACS potency in inactivating both in vitro crotoxin anticoagulant activity and the in vivo lethality of whole venom (ED50) was 0.94 (p value < 0.05). In conclusion, slowness in spontaneous thrombin/fibrin generation even after recalcification elicit time lapse sufficient for elaboration of one dose-response curve to pro-or anti-coagulant agonists in CPS. We propose this methodology as an alternative and sensitive assay for assessing antivenom neutralizing ability in plasma of immunized horses as well as for in-process quality control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...