Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibodies (Basel) ; 13(1)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38390870

RESUMO

This study examines the intricate relationship between protein glycosylation dynamics and therapeutic responses in Luminal A and Luminal B breast cancer subtypes, focusing on anastrozole and tamoxifen impacts. The present methods inadequately monitor and forecast patient reactions to these treatments, leaving individuals vulnerable to the potential adverse effects of these medications. This research investigated glycan structural changes by following patients for up to 9 months. The protocol involved a series of automated steps including IgG isolation, protein denaturation, glycan labelling, purification, and final analysis using capillary gel electrophoresis with laser-induced fluorescence. The results suggested the significant role of glycan modifications in breast cancer progression, revealing distinctive trends in how anastrozole and tamoxifen elicit varied responses. The findings indicate anastrozole's association with reduced sialylation and increased core fucosylation, while tamoxifen correlated with increased sialylation and decreased core fucosylation. These observations suggest potential immunomodulatory effects: anastrozole possibly reducing inflammation and tamoxifen impacting immune-mediated cytotoxicity. This study strongly emphasizes the importance of considering specific glycan traits to comprehend the dynamic mechanisms driving breast cancer progression and the effects of targeted therapies. The nuanced differences observed in glycan modifications between these two treatments underscore the necessity for further comprehensive research aimed at thoroughly evaluating the long-term implications and therapeutic efficacy for breast cancer patients.

2.
Aging (Albany NY) ; 15(24): 14509-14552, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38149987

RESUMO

Glycans are an essential structural component of immunoglobulin G (IgG) that modulate its structure and function. However, regulatory mechanisms behind this complex posttranslational modification are not well known. Previous genome-wide association studies (GWAS) identified 29 genomic regions involved in regulation of IgG glycosylation, but only a few were functionally validated. One of the key functional features of IgG glycosylation is the addition of galactose (galactosylation), a trait which was shown to be associated with ageing. We performed GWAS of IgG galactosylation (N=13,705) and identified 16 significantly associated loci, indicating that IgG galactosylation is regulated by a complex network of genes that extends beyond the galactosyltransferase enzyme that adds galactose to IgG glycans. Gene prioritization identified 37 candidate genes. Using a recently developed CRISPR/dCas9 system we manipulated gene expression of candidate genes in the in vitro IgG expression system. Upregulation of three genes, EEF1A1, MANBA and TNFRSF13B, changed the IgG glycome composition, which confirmed that these three genes are involved in IgG galactosylation in this in vitro expression system.


Assuntos
Galactose , Estudo de Associação Genômica Ampla , Redes Reguladoras de Genes , Imunoglobulina G/genética , Polissacarídeos/metabolismo
3.
Biomolecules ; 13(6)2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37371460

RESUMO

Obstructive sleep apnea (OSA) is a prevalent disease associated with increased risk for cardiovascular and metabolic diseases and shortened lifespan. The aim of this study was to explore the possibility of using N-glycome as a biomarker for the severe form of OSA. Seventy subjects who underwent a whole-night polysomnography/polygraphy and had apnea-hypopnea index (AHI) over 30 were compared to 23 controls (AHI under 5). Plasma samples were used to extract 39 glycan peaks using ultra-high-performance liquid chromatography (UPLC) and 27 IgG peaks using capillary gel electrophoresis (CGE). We also measured glycan age, a molecular proxy for biological aging. Three plasma and one IgG peaks were significant in a multivariate model controlling for the effects of age, sex, and body mass index. These included decreased GP24 (disialylated triantennary glycans as major structure) and GP28 (trigalactosylated, triantennary, disialylated, and trisialylated glycans), and increased GP32 (trisialylated triantennary glycan). Only one IgG glycan peak was significantly increased (P26), which contains biantennary digalactosylated glycans with core fucose. Patients with severe OSA exhibited accelerated biological aging, with a median of 6.9 years more than their chronological age (p < 0.001). Plasma N-glycome can be used as a biomarker for severe OSA.


Assuntos
Apneia Obstrutiva do Sono , Humanos , Apneia Obstrutiva do Sono/etiologia , Polissonografia/efeitos adversos , Envelhecimento , Biomarcadores , Imunoglobulina G
4.
Commun Biol ; 6(1): 312, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959410

RESUMO

Human plasma transferrin (Tf) N-glycosylation has been mostly studied as a marker for congenital disorders of glycosylation, alcohol abuse, and hepatocellular carcinoma. However, inter-individual variability of Tf N-glycosylation is not known, mainly due to technical limitations of Tf isolation in large-scale studies. Here, we present a highly specific robust high-throughput approach for Tf purification from human blood plasma and detailed characterization of Tf N-glycosylation on the level of released glycans by ultra-high-performance liquid chromatography based on hydrophilic interactions and fluorescence detection (HILIC-UHPLC-FLD), exoglycosidase sequencing, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). We perform a large-scale comparative study of Tf and immunoglobulin G (IgG) N-glycosylation analysis in two human populations and demonstrate that Tf N-glycosylation is associated with age and sex, along with multiple biochemical and physiological traits. Observed association patterns differ compared to the IgG N-glycome corroborating tissue-specific N-glycosylation and specific N-glycans' role in their distinct physiological functions.


Assuntos
Imunoglobulina G , Processamento de Proteína Pós-Traducional , Transferrina , Humanos , Glicosilação , Ensaios de Triagem em Larga Escala , Imunoglobulina G/sangue , Imunoglobulina G/química , Transferrina/química , Transferrina/isolamento & purificação , Polissacarídeos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...