Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Urban Water J ; 13(4)2016.
Artigo em Inglês | MEDLINE | ID: mdl-34588945

RESUMO

Changes in precipitation patterns associated with climate change may pose significant challenges for storm water management systems across the U.S. In particular, adapting these systems to more intense rainfall events will require significant investment, though no method currently exists for estimating the costs of these investments on a national scale. To support assessment of these costs at the national level, this paper presents a reduced-form approach for estimating changes in normalized flood depth (the volume of node flooding normalized by the area of the catchment) and the associated costs of flood prevention. This reduced form approach is calibrated to results generated by the U.S. Environmental Protection Agency's Storm Water Management Model (SWMM) for city-wide or neighborhood-level catchments in seven cities across the U.S. Estimates derived from this approach represent a reasonable approximation of storm water management adaptation costs and exhibit no systematic bias relative to results derived from SWMM.

2.
J Air Waste Manag Assoc ; 58(5): 657-72, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18512443

RESUMO

Section 812 of the Clean Air Act Amendments (CAAA) of 1990 requires the U.S. Environmental Protection Agency (EPA) to perform periodic, comprehensive analyses of the total costs and total benefits of programs implemented pursuant to the CAAA. The first prospective analysis was completed in 1999. The second prospective analysis was initiated during 2005. The first step in the second prospective analysis was the development of base and projection year emission estimates that will be used to generate benefit estimates of CAAA programs. This paper describes the analysis, methods, and results of the recently completed emission projections. There are several unique features of this analysis. One is the use of consistent economic assumptions from the Department of Energy's Annual Energy Outlook 2005 (AEO 2005) projections as the basis for estimating 2010 and 2020 emissions for all sectors. Another is the analysis of the different emissions paths for both with and without CAAA scenarios. Other features of this analysis include being the first EPA analysis that uses the 2002 National Emission Inventory files as the basis for making 48-state emission projections, incorporating control factor files from the Regional Planning Organizations (RPOs) that had completed emission projections at the time the analysis was performed, and modeling the emission benefits of the expected adoption of measures to meet the 8-hr ozone National Ambient Air Quality Standards (NAAQS), the Clean Air Visibility Rule, and the PM2.5 NAAQS. This analysis shows that the 1990 CAAA have produced significant reductions in criteria pollutant emissions since 1990 and that these emission reductions are expected to continue through 2020. CAAA provisions have reduced volatile organic compound (VOC) emissions by approximately 7 million t/yr by 2000, and are estimated to produce associated VOC emission reductions of 16.7 million t by 2020. Total oxides of nitrogen (NO(x)) emission reductions attributable to the CAAA are 5, 12, and 17 million t in 2000, 2010, and 2020, respectively. Sulfur dioxide (SO2) emission benefits during the study period are dominated by electricity-generating unit (EGU) SO2 emission reductions. These EGU emission benefits go from 7.5 million t reduced in 2000 to 15 million t reduced in 2020.


Assuntos
Poluição do Ar/legislação & jurisprudência , Poluição do Ar/estatística & dados numéricos , Poluentes Atmosféricos/análise , Poluição do Ar/economia , Análise Custo-Benefício , Bases de Dados Factuais , Previsões , Estados Unidos , United States Environmental Protection Agency , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...