Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Lancet Neurol ; 23(5): 500-510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631766

RESUMO

BACKGROUND: In people with genetic forms of Alzheimer's disease, such as in Down syndrome and autosomal-dominant Alzheimer's disease, pathological changes specific to Alzheimer's disease (ie, accumulation of amyloid and tau) occur in the brain at a young age, when comorbidities related to ageing are not present. Studies including these cohorts could, therefore, improve our understanding of the early pathogenesis of Alzheimer's disease and be useful when designing preventive interventions targeted at disease pathology or when planning clinical trials. We compared the magnitude, spatial extent, and temporal ordering of tau spread in people with Down syndrome and autosomal-dominant Alzheimer's disease. METHODS: In this cross-sectional observational study, we included participants (aged ≥25 years) from two cohort studies. First, we collected data from the Dominantly Inherited Alzheimer's Network studies (DIAN-OBS and DIAN-TU), which include carriers of autosomal-dominant Alzheimer's disease genetic mutations and non-carrier familial controls recruited in Australia, Europe, and the USA between 2008 and 2022. Second, we collected data from the Alzheimer Biomarkers Consortium-Down Syndrome study, which includes people with Down syndrome and sibling controls recruited from the UK and USA between 2015 and 2021. Controls from the two studies were combined into a single group of familial controls. All participants had completed structural MRI and tau PET (18F-flortaucipir) imaging. We applied Gaussian mixture modelling to identify regions of high tau PET burden and regions with the earliest changes in tau binding for each cohort separately. We estimated regional tau PET burden as a function of cortical amyloid burden for both cohorts. Finally, we compared the temporal pattern of tau PET burden relative to that of amyloid. FINDINGS: We included 137 people with Down syndrome (mean age 38·5 years [SD 8·2], 74 [54%] male, and 63 [46%] female), 49 individuals with autosomal-dominant Alzheimer's disease (mean age 43·9 years [11·2], 22 [45%] male, and 27 [55%] female), and 85 familial controls, pooled from across both studies (mean age 41·5 years [12·1], 28 [33%] male, and 57 [67%] female), who satisfied the PET quality-control procedure for tau-PET imaging processing. 134 (98%) people with Down syndrome, 44 (90%) with autosomal-dominant Alzheimer's disease, and 77 (91%) controls also completed an amyloid PET scan within 3 years of tau PET imaging. Spatially, tau PET burden was observed most frequently in subcortical and medial temporal regions in people with Down syndrome, and within the medial temporal lobe in people with autosomal-dominant Alzheimer's disease. Across the brain, people with Down syndrome had greater concentrations of tau for a given level of amyloid compared with people with autosomal-dominant Alzheimer's disease. Temporally, increases in tau were more strongly associated with increases in amyloid for people with Down syndrome compared with autosomal-dominant Alzheimer's disease. INTERPRETATION: Although the general progression of amyloid followed by tau is similar for people Down syndrome and people with autosomal-dominant Alzheimer's disease, we found subtle differences in the spatial distribution, timing, and magnitude of the tau burden between these two cohorts. These differences might have important implications; differences in the temporal pattern of tau accumulation might influence the timing of drug administration in clinical trials, whereas differences in the spatial pattern and magnitude of tau burden might affect disease progression. FUNDING: None.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Síndrome de Down , Masculino , Feminino , Humanos , Adulto , Doença de Alzheimer/genética , Estudos Transversais , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Amiloide , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/patologia
3.
J Cereb Blood Flow Metab ; : 271678X241237624, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452039

RESUMO

In addition to amyloid and tau pathology, elevated systemic vascular risk, white matter injury, and reduced cerebral blood flow contribute to late-life cognitive decline. Given the strong collinearity among these parameters, we proposed a framework to extract the independent latent features underlying cognitive decline using the Harvard Aging Brain Study (N = 166 cognitively unimpaired older adults at baseline). We used the following measures from the baseline visit: cortical amyloid, inferior temporal cortex tau, relative cerebral blood flow, white matter hyperintensities, peak width of skeletonized mean diffusivity, and Framingham Heart Study cardiovascular disease risk. We used exploratory factor analysis to extract orthogonal factors from these variables and their interactions. These factors were used in a regression model to explain longitudinal Preclinical Alzheimer Cognitive Composite-5 (PACC) decline (follow-up = 8.5 ±2.7 years). We next examined whether gray matter volume atrophy acts as a mediator of factors and PACC decline. Latent factors of systemic vascular risk, white matter injury, and relative cerebral blood flow independently explain cognitive decline beyond amyloid and tau. Gray matter volume atrophy mediates these associations with the strongest effect on white matter injury. These results suggest that systemic vascular risk contributes to cognitive decline beyond current markers of cerebrovascular injury, amyloid, and tau.

4.
J Cereb Blood Flow Metab ; 44(1): 131-141, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37728659

RESUMO

Clinically normal females exhibit higher 18F-flortaucipir (FTP)-PET signal than males across the cortex. However, these sex differences may be explained by neuroimaging idiosyncrasies such as off-target extracerebral tracer retention or partial volume effects (PVEs). 343 clinically normal participants (female = 58%; mean[SD]=73.8[8.5] years) and 55 patients with mild cognitive impairment (female = 38%; mean[SD] = 76.9[7.3] years) underwent cross-sectional FTP-PET. We parcellated extracerebral FreeSurfer areas based on proximity to cortical ROIs. Sex differences in cortical tau were then estimated after accounting for local extracerebral retention. We simulated PVE by convolving group-level standardized uptake value ratio means in each ROI with 6 mm Gaussian kernels and compared the sexes across ROIs post-smoothing. Widespread sex differences in extracerebral retention were observed. Although attenuating sex differences in cortical tau-PET signal, covarying for extracerebral retention did not impact the largest sex differences in tau-PET signal. Differences in PVE were observed in both female and male directions with no clear sex-specific bias. Our findings suggest that sex differences in FTP are not solely attributed to off-target extracerebral retention or PVE, consistent with the notion that sex differences in medial temporal and neocortical tau are biologically driven. Future work should investigate sex differences in regional cerebral blood flow kinetics and longitudinal tau-PET.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Masculino , Feminino , Proteínas tau/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Caracteres Sexuais , Estudos Transversais , Tomografia por Emissão de Pósitrons/métodos , Carbolinas/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Doença de Alzheimer/metabolismo
5.
EJNMMI Res ; 13(1): 97, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947880

RESUMO

BACKGROUND: The need for arterial blood data in quantitative PET research limits the wider usability of this imaging method in clinical research settings. Image-derived input function (IDIF) approaches have been proposed as a cost-effective and non-invasive alternative to gold-standard arterial sampling. However, this approach comes with its own limitations-partial volume effects and radiometabolite correction among the most important-and varying rates of success, and the use of IDIF for brain PET has been particularly troublesome. MAIN BODY: This paper summarizes the limitations of IDIF methods for quantitative PET imaging and discusses some of the advances that may make IDIF extraction more reliable. The introduction of automated pipelines (both commercial and open-source) for clinical PET scanners is discussed as a way to improve the reliability of IDIF approaches and their utility for quantitative purposes. Survey data gathered from the PET community are then presented to understand whether the field's opinion of the usefulness and validity of IDIF is improving. Finally, as the introduction of next-generation PET scanners with long axial fields of view, ultra-high sensitivity, and improved spatial and temporal resolution, has also brought IDIF methods back into the spotlight, a discussion of the possibilities offered by these state-of-the-art scanners-inclusion of large vessels, less partial volume in small vessels, better description of the full IDIF kinetics, whole-body modeling of radiometabolite production-is included, providing a pathway for future use of IDIF. CONCLUSION: Improvements in PET scanner technology and software for automated IDIF extraction may allow to solve some of the major limitations associated with IDIF, such as partial volume effects and poor temporal sampling, with the exciting potential for accurate estimation of single kinetic rates. Nevertheless, until individualized radiometabolite correction can be performed effectively, IDIF approaches remain confined at best to a few tracers.

6.
J Cereb Blood Flow Metab ; : 271678X231216144, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38000018

RESUMO

Cerebrovascular dysfunction is a significant contributor to Alzheimer's disease (AD) progression. AD mouse models show altered capillary morphology, density, and diminished blood flow in areas of tau and beta-amyloid accumulation. The purpose of this study was to examine alterations in vascular structure and their contributions to perfusion deficits in the hippocampus in AD and mild cognitive impairment (MCI). Seven individuals with AD and MCI (1 AD/6 MCI), nine cognitively intact older healthy adults, and seven younger healthy adults underwent pseudo-continuous arterial spin labeling (PCASL) and gradient-echo/spin-echo (GESE) dynamic susceptibility contrast (DSC) MRI. Cerebral blood flow (CBF), cerebral blood volume, relative vessel size index (rVSI), and mean vessel density were calculated from model fitting. Lower CBF from PCASL and SE DSC MRI was observed in the hippocampus of AD/MCI group. rVSI in the hippocampus of the AD/MCI group was larger than that of the two healthy groups (FDR-P = 0.02). No difference in vessel density was detected between the groups. We also explored relationship of tau burden from 18F-flortaucipir positron emission tomography and vascular measures from MRI. Tau burden was associated with larger vessel size and lower CBF in the hippocampus. We postulate that larger vessel size may be associated with vascular alterations in AD/MCI.

7.
Neurology ; 101(24): e2533-e2544, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37968130

RESUMO

BACKGROUND AND OBJECTIVES: Hippocampal volume (HV) atrophy is a well-known biomarker of memory impairment. However, compared with ß-amyloid (Aß) and tau imaging, it is less specific for Alzheimer disease (AD) pathology. This lack of specificity could provide indirect information about potential copathologies that cannot be observed in vivo. In this prospective cohort study, we aimed to assess the associations among Aß, tau, HV, and cognition, measured over a 10-year follow-up period with a special focus on the contributions of HV atrophy to cognition after adjusting for Aß and tau. METHODS: We enrolled 283 older adults without dementia or overt cognitive impairment in the Harvard Aging Brain Study. In this report, we only analyzed data from individuals with available longitudinal imaging and cognition data. Serial MRI (follow-up duration 1.3-7.0 years), neocortical Aß imaging on Pittsburgh Compound B PET scans (1.9-8.5 years), entorhinal and inferior temporal tau on flortaucipir PET scans (0.8-6.0 years), and the Preclinical Alzheimer Cognitive Composite (3.0-9.8 years) were prospectively collected. We evaluated the longitudinal associations between Aß, tau, volume, and cognition data and investigated sequential models to test the contribution of each biomarker to cognitive decline. RESULTS: We analyzed data from 128 clinically normal older adults, including 72 (56%) women and 56 (44%) men; median age at inclusion was 73 years (range 63-87). Thirty-four participants (27%) exhibited an initial high-Aß burden on PET imaging. Faster HV atrophy was correlated with faster cognitive decline (R2 = 0.28, p < 0.0001). When comparing all biomarkers, HV slope was associated with cognitive decline independently of Aß and tau measures, uniquely accounting for 10% of the variance. Altogether, 45% of the variance in cognitive decline was explained by combining the change measures in the different imaging biomarkers. DISCUSSION: In older adults, longitudinal hippocampal atrophy is associated with cognitive decline, independently of Aß or tau, suggesting that non-AD pathologies (e.g., TDP-43, vascular) may contribute to hippocampal-mediated cognitive decline. Serial HV measures, in addition to AD-specific biomarkers, may help evaluate the contribution of non-AD pathologies that cannot be measured otherwise in vivo.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Masculino , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Proteínas tau , Estudos Prospectivos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides , Disfunção Cognitiva/diagnóstico por imagem , Biomarcadores , Atrofia , Tomografia por Emissão de Pósitrons
8.
Alzheimers Dement (N Y) ; 9(1): e12372, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873926

RESUMO

Background: The positron emission tomography (PET) radiotracer [18F]MK-6240 exhibits high specificity for neurofibrillary tangles (NFTs) of tau protein in Alzheimer's disease (AD), high sensitivity to medial temporal and neocortical NFTs, and low within-brain background. Objectives were to develop and validate a reproducible, clinically relevant visual read method supporting [18F]MK-6240 use to identify and stage AD subjects versus non-AD and controls. Methods: Five expert readers used their own methods to assess 30 scans of mixed diagnosis (47% cognitively normal, 23% mild cognitive impairment, 20% AD, 10% traumatic brain injury) and provided input regarding regional and global positivity, features influencing assessment, confidence, practicality, and clinical relevance. Inter-reader agreement and concordance with quantitative values were evaluated to confirm that regions could be read reliably. Guided by input regarding clinical applicability and practicality, read classifications were defined. The readers read the scans using the new classifications, establishing by majority agreement a gold standard read for those scans. Two naïve readers were trained and read the 30-scan set, providing initial validation. Inter-rater agreement was further tested by two trained independent readers in 131 scans. One of these readers used the same method to read a full, diverse database of 1842 scans; relationships between read classification, clinical diagnosis, and amyloid status as available were assessed. Results: Four visual read classifications were determined: no uptake, medial temporal lobe (MTL) only, MTL and neocortical uptake, and uptake outside MTL. Inter-rater kappas were 1.0 for the naïve readers gold standard scans read and 0.98 for the independent readers 131-scan read. All scans in the full database could be classified; classification frequencies were concordant with NFT histopathology literature. Discussion: This four-class [18F]MK-6240 visual read method captures the presence of medial temporal signal, neocortical expansion associated with disease progression, and atypical distributions that may reflect different phenotypes. The method demonstrates excellent trainability, reproducibility, and clinical relevance supporting clinical use. Highlights: A visual read method has been developed for [18F]MK-6240 tau positron emission tomography.The method is readily trainable and reproducible, with inter-rater kappas of 0.98.The read method has been applied to a diverse set of 1842 [18F]MK-6240 scans.All scans from a spectrum of disease states and acquisitions could be classified.Read classifications are consistent with histopathological neurofibrillary tangle staging literature.

9.
J Nucl Med ; 64(6): 968-975, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997330

RESUMO

6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]MK6240) has high affinity and selectivity for hyperphosphorylated tau and readily crosses the blood-brain barrier. This study investigated whether the early phase of [18F]MK6240 can be used to provide a surrogate index of cerebral perfusion. Methods: Forty-nine subjects who were cognitively normal (CN), had mild cognitive impairment (MCI), or had Alzheimer's disease (AD) underwent paired dynamic [18F]MK6240 and [11C]Pittsburgh compound B (PiB) PET, as well as structural MRI to obtain anatomic information. Arterial blood samples were collected in a subset of 24 subjects for [18F]MK6240 scans to derive metabolite-corrected arterial input functions. Regional time-activity curves were extracted using atlases available in the Montreal Neurologic Institute template space and using FreeSurfer. The early phase of brain time-activity curves was analyzed using a 1-tissue-compartment model to obtain a robust estimate of the rate of transfer from plasma to brain tissue, K 1 (mL⋅cm-3⋅min-1), and the simplified reference tissue model 2 was investigated for noninvasive estimation of the relative delivery rate, R 1 (unitless). A head-to-head comparison with R 1 derived from [11C]PiB scans was performed. Grouped differences in R 1 were evaluated among CN, MCI, and AD subjects. Results: Regional K 1 values suggested a relatively high extraction fraction. R 1 estimated noninvasively from simplified reference tissue model 2 agreed well with R 1 calculated indirectly from the blood-based compartment modeling (r = 0.99; mean difference, 0.024 ± 0.027), suggesting that robust estimates were obtained. R 1 measurements obtained with [18F]MK6240 correlated strongly and overall agreed well with those obtained from [11C]PiB (r = 0.93; mean difference, -0.001 ± 0.068). Statistically significant differences were observed in regional R 1 measurements among CN, MCI, and AD subjects, notably in the temporal and parietal cortices. Conclusion: Our results provide evidence that the early phase of [18F]MK6240 images may be used to derive a useful index of cerebral perfusion. The early and late phases of a [18F]MK6240 dynamic acquisition may thus offer complementary information about the pathophysiologic mechanisms of the disease.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/diagnóstico por imagem , Compostos de Anilina , Circulação Cerebrovascular
10.
J Cereb Blood Flow Metab ; 43(4): 581-594, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36420769

RESUMO

[18F]MK-6240 meningeal/extracerebral off-target binding may impact tau quantification. We examined the kinetics and longitudinal changes of extracerebral and reference regions. [18F]MK-6240 PET was performed in 24 cognitively-normal and eight cognitively-impaired subjects, with arterial samples in 13 subjects. Follow-up scans at 6.1 ± 0.5 (n = 25) and 13.3 ± 0.9 (n = 16) months were acquired. Extracerebral and reference region (cerebellar gray matter (CerGM)-based, cerebral white matter (WM), pons) uptake were evaluated using standardized uptake values (SUV90-110), spectral analysis, and distribution volume. Longitudinal changes in SUV90-110 were examined. The impact of reference region on target region outcomes, partial volume correction (PVC) and regional erosion were evaluated. Eroded WM and pons showed lower variability, lower extracerebral contamination, and lower longitudinal changes than CerGM-based regions. CerGM-based regions resulted larger cross-sectional effect sizes for group differentiation. Extracerebral signal was high in 50% of subjects and exhibited irreversible kinetics and nonsignificant longitudinal changes over one-year but was highly variable at subject-level. PVC resulted in higher variability in reference region uptake and longitudinal changes. Our results suggest that eroded CerGM may be preferred for cross-sectional, whilst eroded WM or pons may be preferred for longitudinal [18F]MK-6240 studies. For CerGM, erosion was necessary (preferred over PVC) to address the heterogenous nature of extracerebral signal.


Assuntos
Disfunção Cognitiva , Humanos , Estudos Transversais , Cinética , Tomografia por Emissão de Pósitrons/métodos , Estudos de Casos e Controles
11.
Neuroimage ; 267: 119831, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36586541

RESUMO

Converging evidence from both human neuroimaging and animal studies has supported a model of mesolimbic processing underlying reward learning behaviors, based on the computation of reward prediction errors. However, competing evidence supports human dopamine signaling in the basal ganglia as also contributing to the generation of higher order learning heuristics. Here, we present data from a large (N = 81, 18-30yo), multi-modal neuroimaging study using simultaneously acquired task fMRI, affording temporal resolution of reward system function, and PET imaging with [11C]Raclopride (RAC), assessing striatal dopamine (DA) D2/3 receptor binding, during performance of a probabilistic reward learning task. Both fMRI activation and PET DA measures showed ventral striatum involvement for signaling rewards. However, greater DA release was uniquely associated with learning strategies (i.e., learning rates) that were more task-optimal within the best fitting reinforcement learning model. This DA response was associated with BOLD activation of a network of regions including anterior cingulate cortex, medial prefrontal cortex, thalamus and posterior parietal cortex, primarily during expectation, rather than prediction error, task epochs. Together, these data provide novel, human in vivo evidence that striatal dopaminergic signaling interacts with a network of cortical regions to generate task-optimal learning strategies, rather than representing reward outcomes in isolation.


Assuntos
Dopamina , Motivação , Animais , Humanos , Dopamina/metabolismo , Imageamento por Ressonância Magnética/métodos , Corpo Estriado/fisiologia , Recompensa , Tomografia por Emissão de Pósitrons/métodos
12.
J Nucl Med ; 63(11): 15N-22N, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36319112

RESUMO

From the Newsline Editor: The Highlights Lecture, presented at the closing session of each SNMMI Annual Meeting, was originated and presented for more than 30 years by Henry N. Wagner, Jr., MD. Beginning in 2010, the duties of summarizing selected significant presentations at the meeting were divided annually among 4 distinguished nuclear and molecular medicine subject matter experts. Each year Newsline publishes these lectures and selected images. The 2022 Highlights Lectures were delivered on June 14 at the SNMMI Annual Meeting in Vancouver, Canada. In this issue we feature the lecture by Julie Price, PhD, a professor of radiology at the Harvard Medical School and director of PET Pharmacokinetic Modeling in the Athinoula A. Martinos Center for Biomedical Imaging at the Massachusetts General Hospital (Boston, MA), who spoke on neuroscience highlights from the meeting. Note that in the following presentation summary, numerals in brackets represent abstract numbers as published in The Journal of Nuclear Medicine (2022;63[suppl 2]).


Assuntos
Neurociências , Medicina Nuclear , Boston , Hospitais Gerais , Medicina Molecular
13.
JAMA Neurol ; 79(8): 797-807, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35789365

RESUMO

Importance: Novel plasma biomarkers, especially phosphorylated tau (p-tau), can detect brain tau aggregates in Alzheimer disease. Objective: To determine which plasma biomarker combinations can accurately detect tau pathological brain changes in Down syndrome (DS). Design, Setting, and Participants: The cross-sectional, multicenter Alzheimer's Biomarker Consortium-Down Syndrome study included adults with DS and a control group of siblings without DS. All participants with plasma, positron emission tomography (PET), and cognitive measures available by the time of data freeze 1.0 were included. Participants were enrolled between 2016 and 2019, and data were analyzed from August 2021 to April 2022. Exposures: Plasma p-tau217, glial fibrillary acidic protein (GFAP), amyloid ß42/40 (Aß42/Aß40), neurofilament light (NfL), and total tau (t-tau); tau positron emission tomography (tau-PET) and Aß-PET. Main Outcomes and Measures: The primary outcome was tau-PET status. Secondary outcomes included Aß-PET status and cognitive performance. Results: Among 300 participants with DS and a control group of 37 non-DS siblings, mean (SD) age was 45.0 (10.1) years, and 167 (49.6%) were men. Among participants with DS who all underwent plasma p-tau217 and GFAP analyses, 258 had other plasma biomarker data available and 119, 213, and 288 participants had tau-PET, Aß-PET, and cognitive assessments, respectively. Plasma p-tau217 and t-tau were significantly increased in Aß-PET-positive tau-PET-positive (A+T+) DS and A+T- DS compared with A-T- DS while GFAP was only increased in A+T+ DS. Plasma p-tau217 levels were also significantly higher in A+T+ DS than A+T- DS. In participants with DS, plasma p-tau217 and GFAP (but not other plasma biomarkers) were consistently associated with abnormal tau-PET and Aß-PET status in models covaried for age (odds ratio range, 1.59 [95% CI, 1.05-2.40] to 2.32 [95% CI, 1.36-3.96]; P < .03). A combination of p-tau217 and age performed best when detecting tau-PET abnormality in temporal and neocortical regions (area under the curve [AUC] range, 0.96-0.99). The most parsimonious model for Aß-PET status included p-tau217, t-tau, and age (AUC range, 0.93-0.95). In multivariable models, higher p-tau217 levels but not other biomarkers were associated with worse performance on DS Mental Status Examination (ß, -0.24, 95% CI, -0.36 to -0.12; P < .001) and Cued Recall Test (ß, -0.40; 95% CI, -0.53 to -0.26; P < .001). Conclusions and Relevance: Plasma p-tau217 is a very accurate blood-based biomarker of both tau and Aß pathological brain changes in DS that could help guide screening and enrichment strategies for inclusion of individuals with DS in future AD clinical trials, especially when it is combined with age as a covariate.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Síndrome de Down , Adulto , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Estudos Transversais , Síndrome de Down/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo
14.
Alzheimers Dement (Amst) ; 14(1): e12324, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634535

RESUMO

Research suggests a link between Alzheimer's Disease in Down Syndrome (DS) and the overproduction of amyloid plaques. Using Positron Emission Tomography (PET) we can assess the in-vivo regional amyloid load using several available ligands. To measure amyloid distributions in specific brain regions, a brain atlas is used. A popular method of creating a brain atlas is to segment a participant's structural Magnetic Resonance Imaging (MRI) scan. Acquiring an MRI is often challenging in intellectually-imparied populations because of contraindications or data exclusion due to significant motion artifacts or incomplete sequences related to general discomfort. When an MRI cannot be acquired, it is typically replaced with a standardized brain atlas derived from neurotypical populations (i.e. healthy individuals without DS) which may be inappropriate for use in DS. In this project, we create a series of disease and diagnosis-specific (cognitively stable (CS-DS), mild cognitive impairment (MCI-DS), and dementia (DEM-DS)) probabilistic group atlases of participants with DS and evaluate their accuracy of quantifying regional amyloid load compared to the individually-based MRI segmentations. Further, we compare the diagnostic-specific atlases with a probabilistic atlas constructed from similar-aged cognitively-stable neurotypical participants. We hypothesized that regional PET signals will best match the individually-based MRI segmentations by using DS group atlases that aligns with a participant's disorder and disease status (e.g. DS and MCI-DS). Our results vary by brain region but generally show that using a disorder-specific atlas in DS better matches the individually-based MRI segmentations than using an atlas constructed from cognitively-stable neurotypical participants. We found no additional benefit of using diagnose-specific atlases matching disease status. All atlases are made publicly available for the research community. Highlight: Down syndrome (DS) joint-label-fusion atlases provide accurate positron emission tomography (PET) amyloid measurements.A disorder-specific DS atlas is better than a neurotypical atlas for PET quantification.It is not necessary to use a disease-state-specific atlas for quantification in aged DS.Dorsal striatum results vary, possibly due to this region and dementia progression.

15.
J Cereb Blood Flow Metab ; 42(7): 1309-1321, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35118904

RESUMO

Compartmental modeling analysis of 11C-raclopride (RAC) PET data can be used to measure the dopaminergic response to intra-scan behavioral tasks. Bias in estimates of binding potential (BPND) and its dynamic changes (ΔBPND) can arise both when head motion is present and when the compartmental model used for parameter estimation deviates from the underlying biology. The purpose of this study was to characterize the effects of motion and model bias within the context of a behavioral task challenge, examining the impacts of different mitigation strategies. Seventy healthy adults were administered bolus plus constant infusion RAC during a simultaneous PET/magnetic resonance (MR) scan with a reward task experiment. BPND and ΔBPND were estimated using an extension of the Multilinear Reference Tissue Model (E-MRTM2) and a new method (DE-MRTM2) was proposed to selectively discount the contribution of the initial uptake period. Motion was effectively corrected with a standard frame-based approach, which performed equivalently to a more complex reconstruction-based approach. DE-MRTM2 produced estimates of ΔBPND in putamen and nucleus accumbens that were significantly different from those estimated from E-MRTM2, while also decoupling ΔBPND values from first-pass k2' estimation and removing skew in the spatial bias distribution of parametric ΔBPND estimates within the striatum.


Assuntos
Dopamina , Tomografia por Emissão de Pósitrons , Adulto , Viés , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Dopamina/metabolismo , Humanos , Tomografia por Emissão de Pósitrons/métodos , Racloprida/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-35140142

RESUMO

BACKGROUND AND OBJECTIVES: The presence of HIV in the CNS has been related to chronic immune activation and cognitive dysfunction. The aim of this work was to investigate (1) the presence of neuroinflammation in aviremic people with HIV (PWH) on therapy and in nontreated aviremic PWH (elite controllers [ECs]) using a translocator protein 18 kDa radioligand; (2) the relationship between neuroinflammation and cognitive function in aviremic PWH; and (3) the relationship between [11C]-PBR28 signal and quantitative MRI (qMRI) measures of brain tissue integrity such as T1 and T2 relaxation times (rts). METHODS: [11C]-PBR28 (standard uptake value ratio, SUVR) images were generated in 36 participants (14 PWH, 6 ECs, and 16 healthy controls) using a statistically defined pseudoreference region. Group comparisons of [11C]-PBR28 SUVR were performed using region of interest-based and voxelwise analyses. The relationship between inflammation, qMRI measures, and cognitive function was studied. RESULTS: In region of interest analyses, ECs exhibited significantly lower [11C]-PBR28 signal in the thalamus, putamen, superior temporal gyrus, prefrontal cortex, and cerebellum compared with the PWH. In voxelwise analyses, differences were observed in the thalamus, precuneus cortex, inferior temporal gyrus, occipital cortex, cerebellum, and white matter (WM). [11C]-PBR28 signal in the WM and superior temporal gyrus was related to processing speed and selective attention in PWH. In a subset of PWH (n = 12), [11C]-PBR28 signal in the thalamus and WM regions was related to a decrease in T2 rt and to an increase in T1 rt suggesting a colocalization of increased glial metabolism, decrease in microstructural integrity, and iron accumulation. DISCUSSION: This study casts a new light onto the role of neuroinflammation and related microstructural alterations of HIV infection in the CNS and shows that ECs suppress neuroinflammation more effectively than PWH on therapy.


Assuntos
Antirretrovirais/farmacologia , Encefalopatias , Disfunção Cognitiva , Infecções por HIV , Paciente HIV Positivo não Progressor , Neuroimagem , Doenças Neuroinflamatórias , Idoso , Encefalopatias/diagnóstico por imagem , Encefalopatias/tratamento farmacológico , Encefalopatias/patologia , Encefalopatias/virologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/fisiopatologia , Feminino , Infecções por HIV/diagnóstico por imagem , Infecções por HIV/tratamento farmacológico , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Doenças Neuroinflamatórias/diagnóstico por imagem , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/virologia , Tomografia por Emissão de Pósitrons
17.
J Nucl Med ; 63(4): 615-621, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34301784

RESUMO

PET/MRI scanners cannot be qualified in the manner adopted for hybrid PET/CT devices. The main hurdle with qualification in PET/MRI is that attenuation correction (AC) cannot be adequately measured in conventional PET phantoms because of the difficulty in converting the MR images of the physical structures (e.g., plastic) into electron density maps. Over the last decade, a plethora of novel MRI-based algorithms has been developed to more accurately derive the attenuation properties of the human head, including the skull. Although promising, none of these techniques has yet emerged as an optimal and universally adopted strategy for AC in PET/MRI. In this work, we propose a path for PET/MRI qualification for multicenter brain imaging studies. Specifically, our solution is to separate the head AC from the other factors that affect PET data quantification and use a patient as a phantom to assess the former. The emission data collected on the integrated PET/MRI scanner to be qualified should be reconstructed using both MRI- and CT-based AC methods, and whole-brain qualitative and quantitative (both voxelwise and regional) analyses should be performed. The MRI-based approach will be considered satisfactory if the PET quantification bias is within the acceptance criteria specified here. We have implemented this approach successfully across 2 PET/MRI scanner manufacturers at 2 sites.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Tomografia por Emissão de Pósitrons/métodos
18.
Brain ; 145(6): 2161-2176, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34918018

RESUMO

Individuals with familial Alzheimer's disease due to PSEN1 mutations develop high cortical fibrillar amyloid-ß load but often have lower cortical 11C-Pittsburgh compound B (PiB) retention than Individuals with sporadic Alzheimer's disease. We hypothesized this is influenced by limited interactions of Pittsburgh compound B with cotton wool plaques, an amyloid-ß plaque type common in familial Alzheimer's disease but rare in sporadic Alzheimer's disease. Histological sections of frontal and temporal cortex, caudate nucleus and cerebellum were obtained from 14 cases with sporadic Alzheimer's disease, 12 cases with familial Alzheimer's disease due to PSEN1 mutations, two relatives of a PSEN1 mutation carrier but without genotype information and three non-Alzheimer's disease cases. Sections were processed immunohistochemically using amyloid-ß-targeting antibodies and the fluorescent amyloid stains cyano-PiB and X-34. Plaque load was quantified by percentage area analysis. Frozen homogenates from the same brain regions from five sporadic Alzheimer's disease and three familial Alzheimer's disease cases were analysed for 3H-PiB in vitro binding and concentrations of amyloid-ß1-40 and amyloid-ß1-42. Nine sporadic Alzheimer's disease, three familial Alzheimer's disease and three non-Alzheimer's disease participants had 11C-PiB PET with standardized uptake value ratios calculated using the cerebellum as the reference region. Cotton wool plaques were present in the neocortex of all familial Alzheimer's disease cases and one sporadic Alzheimer's disease case, in the caudate nucleus from four familial Alzheimer's disease cases, but not in the cerebellum. Cotton wool plaques immunolabelled robustly with 4G8 and amyloid-ß42 antibodies but weakly with amyloid-ß40 and amyloid-ßN3pE antibodies and had only background cyano-PiB fluorescence despite labelling with X-34. Relative to amyloid-ß plaque load, cyano-Pittsburgh compound B plaque load was similar in sporadic Alzheimer's disease while in familial Alzheimer's disease it was lower in the neocortex and the caudate nucleus. In both regions, insoluble amyloid-ß1-42 and amyloid-ß1-40 concentrations were similar in familial Alzheimer's disease and sporadic Alzheimer's disease groups, while 3H-PiB binding was lower in the familial Alzheimer's disease than the sporadic Alzheimer's disease group. Higher amyloid-ß1-42 concentration associated with higher 3H-PiB binding in sporadic Alzheimer's disease but not familial Alzheimer's disease. 11C-PiB retention correlated with region-matched post-mortem amyloid-ß plaque load; however, familial Alzheimer's disease cases with abundant cotton wool plaques had lower 11C-PiB retention than sporadic Alzheimer's disease cases with similar amyloid-ß plaque loads. PiB has limited ability to detect amyloid-ß aggregates in cotton wool plaques and may underestimate total amyloid-ß plaque burden in brain regions with abundant cotton wool plaques.


Assuntos
Doença de Alzheimer , Tomografia por Emissão de Pósitrons , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina/metabolismo , Encéfalo/patologia , Radioisótopos de Carbono/metabolismo , Humanos , Placa Amiloide/metabolismo
19.
Brain ; 145(3): 1098-1110, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34528069

RESUMO

We recently showed that patients with different chronic pain conditions (such as chronic low back pain, fibromyalgia, migraine and Gulf War illness) demonstrated elevated brain and/or spinal cord levels of the glial marker 18-kDa translocator protein (TSPO), which suggests that neuroinflammation might be a pervasive phenomenon observable across multiple aetiologically heterogeneous pain disorders. Interestingly, the spatial distribution of this neuroinflammatory signal appears to exhibit a degree of disease specificity (e.g. with respect to the involvement of the primary somatosensory cortex), suggesting that different pain conditions may exhibit distinct 'neuroinflammatory signatures'. To explore this hypothesis further, we tested whether neuroinflammatory signal can characterize putative aetiological subtypes of chronic low back pain patients based on clinical presentation. Specifically, we explored neuroinflammation in patients whose chronic low back pain either did or did not radiate to the leg (i.e. 'radicular' versus 'axial' back pain). Fifty-four patients with chronic low back pain, 26 with axial back pain [43.7 ± 16.6 years old (mean ± SD)] and 28 with radicular back pain (48.3 ± 13.2 years old), underwent PET/MRI with 11C-PBR28, a second-generation radioligand for TSPO. 11C-PBR28 signal was quantified using standardized uptake values ratio (validated against volume of distribution ratio; n = 23). Functional MRI data were collected simultaneously to the 11C-PBR28 data (i) to functionally localize the primary somatosensory cortex back and leg subregions; and (ii) to perform functional connectivity analyses (in order to investigate possible neurophysiological correlations of the neuroinflammatory signal). PET and functional MRI measures were compared across groups, cross-correlated with one another and with the severity of 'fibromyalgianess' (i.e. the degree of pain centralization, or 'nociplastic pain'). Furthermore, statistical mediation models were used to explore possible causal relationships between these three variables. For the primary somatosensory cortex representation of back/leg, 11C-PBR28 PET signal and functional connectivity to the thalamus were: (i) higher in radicular compared to axial back pain patients; (ii) positively correlated with each other; (iii) positively correlated with fibromyalgianess scores, across groups; and finally (iv) fibromyalgianess mediated the association between 11C-PBR28 PET signal and primary somatosensory cortex-thalamus connectivity across groups. Our findings support the existence of 'neuroinflammatory signatures' that are accompanied by neurophysiological changes and correlate with clinical presentation (in particular, with the degree of nociplastic pain) in chronic pain patients. These signatures may contribute to the subtyping of distinct pain syndromes and also provide information about interindividual variability in neuroimmune brain signals, within diagnostic groups, that could eventually serve as targets for mechanism-based precision medicine approaches.


Assuntos
Dor Crônica , Dor Lombar , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Dor Crônica/diagnóstico por imagem , Humanos , Dor Lombar/diagnóstico por imagem , Dor Lombar/metabolismo , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/metabolismo
20.
Sci Transl Med ; 13(612): eabj2511, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550726

RESUMO

Several autopsy studies recognize the locus coeruleus (LC) as the initial site of hyperphosphorylated TAU aggregation, and as the number of LC neurons harboring TAU increases, TAU pathology emerges throughout the cortex. By conjointly using dedicated MRI measures of LC integrity and TAU and amyloid PET imaging, we aimed to address the question whether in vivo LC measures relate to initial cortical patterns of Alzheimer's disease (AD) fibrillar proteinopathies or cognitive dysfunction in 174 cognitively unimpaired and impaired older individuals with longitudinal cognitive measures. To guide our interpretations, we verified these associations in autopsy data from 1524 Religious Orders Study and Rush Memory and Aging Project and 2145 National Alzheimer's Coordinating Center cases providing three different LC measures (pigmentation, tangle density, and neuronal density), Braak staging, ß-amyloid, and longitudinal cognitive measures. Lower LC integrity was associated with elevated TAU deposition in the entorhinal cortex among unimpaired individuals consistent with postmortem correlations between LC tangle density and successive Braak staging. LC pigmentation ratings correlated with LC neuronal density but not with LC tangle density and were particularly worse at advanced Braak stages. In the context of elevated ß-amyloid, lower LC integrity and greater cortical tangle density were associated with greater TAU burden beyond the medial temporal lobe and retrospective memory decline. These findings support neuropathologic data in which early LC TAU accumulation relates to disease progression and identify LC integrity as a promising indicator of initial AD-related processes and subtle changes in cognitive trajectories of preclinical AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Locus Cerúleo , Neuropatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...