Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 51(2): 514-20, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18158342

RESUMO

Chronic central administration of insulin increases the gain of baroreflex control of heart rate, but whether baroreflex control of the sympathetic nervous system is similarly affected is unknown. The sites and mechanisms by which brain insulin influences the baroreflex are also unclear. Therefore, the present study tested the hypothesis that acute infusion of insulin into the brain ventricles of urethane-anesthetized rats increases gain of baroreflex control of heart rate and lumbar sympathetic nerve activity and that this action is gender specific. Furthermore, to identify the location within the brain that mediates these effects, insulin was infused into either the lateral ventricle or the fourth ventricle. Lateral ventricular insulin infusion increased the gain of baroreflex control of heart rate (2.1+/-0.3 to 4.0+/-0.6 bpm/mm Hg; P<0.05) and sympathetic activity (2.3+/-0.3% to 4.8+/-1.1% control/mm Hg; P<0.05) within 60 to 90 minutes; however, the increase in heart rate gain was similar in males and females. Increases in the maximum of baroreflex control of heart rate (395+/-10 to 452+/-13 bpm; P<0.05) and of sympathetic activity (156+/-13% to 253+/-22% control; P<0.05) were also observed. In contrast, fourth ventricular insulin infusion failed to alter baroreflex function. In conclusion, increases in brain insulin act acutely in the forebrain to enhance gain of baroreflex control of heart rate and lumbar sympathetic nerve activity.


Assuntos
Barorreflexo/fisiologia , Frequência Cardíaca/fisiologia , Insulina/administração & dosagem , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/fisiologia , Sistema Nervoso Simpático/fisiologia , Animais , Glicemia/metabolismo , Feminino , Quarto Ventrículo , Injeções Intraventriculares , Insulina/farmacologia , Ventrículos Laterais , Região Lombossacral , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
2.
J Appl Physiol (1985) ; 98(2): 447-53, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15465887

RESUMO

In normally active individuals, postexercise hypotension after a single bout of aerobic exercise occurs due to an unexplained peripheral vasodilation. Prostaglandin production has been suggested to contribute to the increases in blood flow during and after exercise; however, its potential contribution to postexercise hypotension has not been assessed. The purpose of this study was to determine the potential contribution of a prostaglandin-dependent vasodilation to changes in systemic vascular conductance underlying postexercise hypotension; this was done by inhibiting production of prostaglandins with the cyclooxygenase inhibitor ibuprofen. We studied 11 healthy normotensive men (aged 23.7 +/- 4.2 yr) before and during the 90 min after a 60-min bout of cycling at 60% peak O(2) uptake on a control and a cyclooxygenase inhibition day (randomized). Subjects received 10 mg/kg of oral ibuprofen on the cyclooxygenase inhibition day. On both study days, arterial blood pressure (automated auscultation) and cardiac output (acetylene uptake) were measured, and systemic vascular conductance was calculated. Inhibition of cyclooxygenase had no effect on baseline values of mean arterial pressure or systemic vascular conductance (P > 0.2). After exercise on both days, mean arterial pressure was reduced (-2.2 +/- 1.0 mmHg change with the control condition and -3.8 +/- 1.5 mmHg change with the ibuprofen condition, both P < 0.05 vs. preexercise) and systemic vascular conductance was increased (5.2 +/- 5.0% change with the control condition and 8.7 +/- 4.1% change with the ibuprofen condition, both P < 0.05 vs. preexercise). There were no differences between study days (P > 0.6). These data suggest that prostaglandin-dependent vasodilation does not contribute to the increased systemic vascular conductance underlying postexercise hypotension.


Assuntos
Hipotensão/fisiopatologia , Ibuprofeno/administração & dosagem , Perna (Membro)/irrigação sanguínea , Perna (Membro)/fisiopatologia , Esforço Físico , Prostaglandinas/sangue , Vasodilatação/efeitos dos fármacos , Adulto , Pressão Sanguínea , Inibidores de Ciclo-Oxigenase/administração & dosagem , Humanos , Masculino , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiopatologia
3.
J Appl Physiol (1985) ; 98(4): 1463-8, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15608087

RESUMO

After a single bout of aerobic exercise, oxygen consumption remains elevated above preexercise levels [excess postexercise oxygen consumption (EPOC)]. Similarly, skeletal muscle blood flow remains elevated for an extended period of time. This results in a postexercise hypotension. The purpose of this study was to explore the possibility of a causal link between EPOC, postexercise hypotension, and postexercise elevations in skeletal muscle blood flow by comparing the magnitude and duration of these postexercise phenomena. Sixteen healthy, normotensive, moderately active subjects (7 men and 9 woman, age 20-31 yr) were studied before and through 135 min after a 60-min bout of upright cycling at 60% of peak oxygen consumption. Resting and recovery VO2 were measured with a custom-built dilution hood and mass spectrometer-based metabolic system. Mean arterial pressure was measured via an automated blood pressure cuff, and femoral blood flow was measured using ultrasound. During the first hour postexercise, VO2 was increased by 11 +/- 2%, leg blood flow was increased by 51 +/- 18%, leg vascular conductance was increased by 56 +/- 19%, and mean arterial pressure was decreased by 2.2 +/- 1.0 mmHg (all P <0.05 vs. preexercise). At the end of the protocol, VO2 remained elevated by 4 +/- 2% (P <0.05), whereas leg blood flow, leg vascular conductance, and mean arterial pressure returned to preexercise levels (all P >0.7 vs. preexercise). Taken together, these data demonstrate that EPOC and the elevations in skeletal muscle blood flow underlying postexercise hypotension do not share a common time course. This suggests that there is no causal link between these two postexercise phenomena.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Perna (Membro)/irrigação sanguínea , Perna (Membro)/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia , Esforço Físico/fisiologia , Adaptação Fisiológica/fisiologia , Adulto , Feminino , Humanos , Masculino , Oxigênio/metabolismo
4.
J Appl Physiol (1985) ; 97(6): 2065-70, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15310744

RESUMO

Moderate exercise elicits a relative postexercise hypotension that is caused by an increase in systemic vascular conductance. Previous studies have shown that skeletal muscle vascular conductance is increased postexercise. It is unclear whether these hemodynamic changes are limited to skeletal muscle vascular beds. The aim of this study was to determine whether the splanchnic and/or renal vascular beds also contribute to the rise in systemic vascular conductance during postexercise hypotension. A companion study aims to determine whether the cutaneous vascular bed is involved in postexercise hypotension (Wilkins BW, Minson CT, and Halliwill JR. J Appl Physiol 97: 2071-2076, 2004). Heart rate, arterial pressure, cardiac output, leg blood flow, splanchnic blood flow, and renal blood flow were measured in 13 men and 3 women before and through 120 min after a 60-min bout of exercise at 60% of peak oxygen uptake. Vascular conductances of leg, splanchnic, and renal vascular beds were calculated. One hour postexercise, mean arterial pressure was reduced (79.1 +/- 1.7 vs. 83.4 +/- 1.8 mmHg; P < 0.05), systemic vascular conductance was increased by approximately 10%, leg vascular conductance was increased by approximately 65%, whereas splanchnic (16.0 +/- 1.8 vs. 18.5 +/- 2.4 ml.min(-1).mmHg(-1); P = 0.13) and renal (20.4 +/- 3.3 vs. 17.6 +/- 2.6 ml.min(-1).mmHg(-1); P = 0.14) vascular conductances were unchanged compared with preexercise. This suggests there is neither vasoconstriction nor vasodilation in the splanchnic and renal vasculature during postexercise hypotension. Thus the splanchnic and renal vascular beds neither directly contribute to nor attenuate postexercise hypotension.


Assuntos
Exercício Físico/fisiologia , Hipotensão/fisiopatologia , Circulação Renal/fisiologia , Circulação Esplâncnica/fisiologia , Adolescente , Adulto , Barorreflexo/fisiologia , Pressão Sanguínea/fisiologia , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Volume Plasmático/fisiologia , Pele/irrigação sanguínea , Sistema Nervoso Simpático/fisiologia , Resistência Vascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...