Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Today Bio ; 26: 101065, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38706731

RESUMO

The recent FDA decision to eliminate animal testing requirements emphasises the role of cell models, such as spheroids, as regulatory test alternatives for investigations of cellular behaviour, drug responses, and disease modelling. The influence of environment on spheroid formation are incompletely understood, leading to uncertainty in matrix selection for scaffold-based 3D culture. This study uses atomic force microscopy-based techniques to quantify cell adhesion to Matrigel and cellulose nanofibrils (CNF), and cell-cell adhesion forces, and their role in spheroid formation of hepatocellular carcinoma (HepG2) and induced pluripotent stem cells (iPS(IMR90)-4). Results showed different cell behaviour in CNF and Matrigel cultures. Both cell lines formed compact spheroids in CNF but loose cell aggregates in Matrigel. Interestingly, the type of cell adhesion protein, and not the bond strength, appeared to be a key factor in the formation of compact spheroids. The gene expression of E- and N-cadherins, proteins on cell membrane responsible for cell-cell interactions, was increased in CNF culture, leading to formation of compact spheroids while Matrigel culture induced integrin-laminin binding and downregulated E-cadherin expression, resulting in looser cell aggregates. These findings enhance our understanding of cell-biomaterial interactions in 3D cultures and offer insights for improved 3D cell models, culture biomaterials, and applications in drug research.

2.
J Control Release ; 368: 397-412, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423475

RESUMO

Platelet-rich plasma (PRP) is a source of growth factors, which are implicated in active tissue regeneration. However, after transplantation the efficacy of these bioactive compounds is often diminished due to rapid degradation and untargeted localization. For this reason, we evaluated the potential of nanofibrillated cellulose (NFC) hydrogel as a PRP carrier. NFC hydrogel is an animal-free biomaterial that, when doped with cellulase, can assist the release of PRP in a wound site. In this study, we examined the effects of 0.5% (m/v) NFC hydrogel formulations, including PRP and cellulase, on the migration and proliferation of skin cells via an in vitro scratch wound model. The suitability of the 0.8% NFC hydrogel formulations for accelerated wound healing and PRP carrying was studied in vitro in diffusion studies and in vivo in a full-thickness excisional wound model in SKH1 mice. None of the NFC hydrogel formulations with or without PRP and cellulase disturbed the normal cell behavior in vitro, and cellulase was successfully used to degrade NFC. NFC hydrogel slowed fibroblast migration rate in vitro. In vivo, NFC hydrogel treatment showed significantly enhanced re-epithelialization compared to control and supported collagen deposition. In addition, angiogenesis was significantly induced via PRP release after degrading NFC hydrogel with cellulase without abnormal host reaction. This study demonstrates the potential of NFC hydrogel with cellulase as a carrier for PRP with controlled release in future skin tissue engineering applications.


Assuntos
Celulases , Plasma Rico em Plaquetas , Camundongos , Animais , Hidrogéis/farmacologia , Celulose , Cicatrização , Celulases/farmacologia
3.
J Stem Cells Regen Med ; 19(1): 3-13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37366409

RESUMO

Human pluripotent stem cells (hPSCs) are a promising source of somatic cells for clinical applications and disease modelling. However, during culture they accumulate genetic aberrations such as amplification of 20q11.21 which occurs in approximately 20% of extensively cultured hPSC lines and confers a BCL2L1-mediated survival advantage. During the production of the large number of cells required for transplantation and therapy these aberrations may become unavoidable which has important safety implications for therapies and may also impact upon disease modelling. Presently, these risks are poorly understood; whilst it is apparent that large-scale genetic aberrations can pose an oncogenic risk, the risks associated with smaller, more insidious changes have not been fully explored. In this report, the effects of engraftment of human embryonic stem cells (hESCs) and hESC-derived hepatocyte-like cells (HLCs) with and without amplification of the 20q11.21 minimal amplicon and isochromosome 20q (i20q) in SCID-beige mice are presented. The cells were tracked in vivo using a luminescent reporter over a period of approximately four months. Intrasplenic injection of hESCs showed greater engraftment potential and the formation of more severely disruptive lesions in the liver and spleen of animals injected with cells containing 20q11.21 compared with i20q and wild type. HLCs with 20q11.21 engrafted more successfully and formed more severely disruptive lesions than wild type cells or cells with i20q. These results reinforce the notion that karyotyping of therapeutic hPSC is required for transplant, and suggest that screening for known common aberrations is necessary. Further work to identify commonly arising genetic aberrations should be performed and routine screening for hPSCs intended for therapeutic use should be used.

5.
Clin Pharmacol Ther ; 112(5): 1000-1003, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35766115

RESUMO

During pharmacotherapy, knowledge about the actual drug and metabolite concentrations in plasma is often critical. Individual dose adjustments can be performed based on pre-emptive genotyping of certain absorption, distribution, metabolism, and excretion (ADME) genes but also using therapeutic drug monitoring (TDM). Analyses of liquid biopsies for tumor-derived components are well-established and have been found to be a good complement to biopsy examinations. Recently, liquid biopsy-based quantification of cell-free RNA (cfRNA) in plasma exosomes was proposed as a proxy measurement for the expression of different hepatic ADME genes and for the rate of drug metabolism, constituting an alternative to TDM. In this study, we validated these findings by examining the correlation between mRNA expression of eight different CYP genes in liver and the corresponding rate of enzyme-specific drug metabolism in 96 donor-matched liver samples. Analyses of CYP-dependent drug metabolism in liver microsomes in comparison to the level of mRNA expression for the different CYP genes revealed a mean Pearson correlation coefficient of 0.28. The highest correlations (0.33-0.34) were obtained for CYP2D6 and CYP3A4 and the weakest correlations were observed for CYP1A2 and CYP2B6 (0.18-0.21). In all cases, the correlations obtained were too weak to demonstrate a predictive relationship, likely due to different regulatory and post-translational events controlling the rate of enzyme activity. Our results reinforce the notion that, whilst liquid biopsy-based approaches might have utility for prediction of hepatic CYP protein expression, they are not currently an important substitute for TDM.


Assuntos
Ácidos Nucleicos Livres , Citocromo P-450 CYP1A2 , Humanos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Monitoramento de Medicamentos , Citocromo P-450 CYP2B6/metabolismo , Microssomos Hepáticos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biópsia Líquida , Ácidos Nucleicos Livres/metabolismo
6.
Cells ; 11(10)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35626634

RESUMO

The in vivo-relevant phenotype of 3D liver spheroids allows for long-term studies of, e.g., novel mechanisms of chronic drug-induced liver toxicity. Using this system, we present a novel drug-induced stress response in human and murine hepatocyte spheroids, wherein long slender filaments form after chronic treatment with four different drugs, of which three are PPARα antagonists. The morphology of the thorns varies between donors and the compounds used. They are mainly composed of diverse protein fibres, which are glycosylated. Their formation is inhibited by treatment with fatty acids or antioxidants. Treatment of mice with GW6471 revealed changes in gene and protein expression, such as those in the spheroids. In addition, similar changes in keratin expression were seen following the treatment of hepatotoxic drugs, including aflatoxin B1, paracetamol, chlorpromazine, cyclosporine, and ketoconazole. We suggest that thorn formation may be indicative of hepatocyte metaplasia in response to toxicity and that more focus should be placed on alterations of ECM-derived protein expression as biomarkers of liver disease and chronic drug-induced hepatotoxicity, changes that can be studied in stable in vivo-like hepatic cell systems, such as the spheroids.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Esferoides Celulares , Acetaminofen , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/metabolismo , Humanos , Camundongos
7.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34360999

RESUMO

CYP2E1 is one of the fifty-seven cytochrome P450 genes in the human genome and is highly conserved. CYP2E1 is a unique P450 enzyme because its heme iron is constitutively in the high spin state, allowing direct reduction of, e.g., dioxygen, causing the formation of a variety of reactive oxygen species and reduction of xenobiotics to toxic products. The CYP2E1 enzyme has been the focus of scientific interest due to (i) its important endogenous function in liver homeostasis, (ii) its ability to activate procarcinogens and to convert certain drugs, e.g., paracetamol and anesthetics, to cytotoxic end products, (iii) its unique ability to effectively reduce dioxygen to radical species causing liver injury, (iv) its capability to reduce compounds, often generating radical intermediates of direct toxic or indirect immunotoxic properties and (v) its contribution to the development of alcoholic liver disease, steatosis and NASH. In this overview, we present the discovery of the enzyme and studies in humans, 3D liver systems and genetically modified mice to disclose its function and clinical relevance. Induction of the CYP2E1 enzyme either by alcohol or high-fat diet leads to increased severity of liver pathology and likelihood to develop ALD and NASH, with subsequent influence on the occurrence of hepatocellular cancer. Thus, fat-dependent induction of the enzyme might provide a link between steatosis and fibrosis in the liver. We conclude that CYP2E1 has many important physiological functions and is a key enzyme for hepatic carcinogenesis, drug toxicity and liver disease.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Fígado Gorduroso Alcoólico/metabolismo , Peroxidação de Lipídeos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Fígado Gorduroso Alcoólico/patologia , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia
8.
Biochem J ; 476(7): 1149-1158, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988136

RESUMO

Adverse drug reactions (ADRs) are the unintended side effects of drugs. They are categorised as either predictable or unpredictable drug-induced injury and may be exhibited after a single or prolonged exposure to one or multiple compounds. Historically, toxicology studies rely heavily on animal models to understand and characterise the toxicity of novel compounds. However, animal models are imperfect proxies for human toxicity and there have been several high-profile cases of failure of animal models to predict human toxicity e.g. fialuridine, TGN1412 which highlight the need for improved predictive models of human toxicity. As a result, stem cell-derived models are under investigation as potential models for toxicity during early stages of drug development. Stem cells retain the genotype of the individual from which they were derived, offering the opportunity to model the reproducibility of rare phenotypes in vitro Differentiated 2D stem cell cultures have been investigated as models of hepato- and cardiotoxicity. However, insufficient maturity, particularly in the case of hepatocyte-like cells, means that their widespread use is not currently a feasible method to tackle the complex issues of off-target and often unpredictable toxicity of novel compounds. This review discusses the current state of the art for modelling clinically relevant toxicities, e.g. cardio- and hepatotoxicity, alongside the emerging need for modelling gastrointestinal toxicity and seeks to address whether stem cell technologies are a potential solution to increase the accuracy of ADR predictivity in humans.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Células-Tronco/efeitos dos fármacos , Animais , Trato Gastrointestinal/efeitos dos fármacos , Coração/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Modelos Biológicos , Fenômenos Toxicológicos
9.
Arch Toxicol ; 92(2): 557-569, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29362863

RESUMO

The development of improved, innovative models for the detection of toxicity of drugs, chemicals, or chemicals in cosmetics is crucial to efficiently bring new products safely to market in a cost-effective and timely manner. In addition, improvement in models to detect toxicity may reduce the incidence of unexpected post-marketing toxicity and reduce or eliminate the need for animal testing. The safety of novel products of the pharmaceutical, chemical, or cosmetics industry must be assured; therefore, toxicological properties need to be assessed. Accepted methods for gathering the information required by law for approval of substances are often animal methods. To reduce, refine, and replace animal testing, innovative organotypic in vitro models have emerged. Such models appear at different levels of complexity ranging from simpler, self-organized three-dimensional (3D) cell cultures up to more advanced scaffold-based co-cultures consisting of multiple cell types. This review provides an overview of recent developments in the field of toxicity testing with in vitro models for three major organ types: heart, skin, and liver. This review also examines regulatory aspects of such models in Europe and the UK, and summarizes best practices to facilitate the acceptance and appropriate use of advanced in vitro models.


Assuntos
Técnicas de Cultura de Células , Coração/efeitos dos fármacos , Fígado/efeitos dos fármacos , Pele/efeitos dos fármacos , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais/métodos , Animais , Qualidade de Produtos para o Consumidor , Humanos
10.
Toxicol Sci ; 144(1): 173-85, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25527335

RESUMO

Emerging hepatic models for the study of drug-induced toxicity include pluripotent stem cell-derived hepatocyte-like cells (HLCs) and complex hepatocyte-non-parenchymal cellular coculture to mimic the complex multicellular interactions that recapitulate the niche environment in the human liver. However, a specific marker of hepatocyte perturbation, required to discriminate hepatocyte damage from non-specific cellular toxicity contributed by non-hepatocyte cell types or immature differentiated cells is currently lacking, as the cytotoxicity assays routinely used in in vitro toxicology research depend on intracellular molecules which are ubiquitously present in all eukaryotic cell types. In this study, we demonstrate that microRNA-122 (miR-122) detection in cell culture media can be used as a hepatocyte-enriched in vitro marker of drug-induced toxicity in homogeneous cultures of hepatic cells, and a cell-specific marker of toxicity of hepatic cells in heterogeneous cultures such as HLCs generated from various differentiation protocols and pluripotent stem cell lines, where conventional cytotoxicity assays using generic cellular markers may not be appropriate. We show that the sensitivity of the miR-122 cytotoxicity assay is similar to conventional assays that measure lactate dehydrogenase activity and intracellular adenosine triphosphate when applied in hepatic models with high levels of intracellular miR-122, and can be multiplexed with other assays. MiR-122 as a biomarker also has the potential to bridge results in in vitro experiments to in vivo animal models and human samples using the same assay, and to link findings from clinical studies in determining the relevance of in vitro models being developed for the study of drug-induced liver injury.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/genética , Diclofenaco/toxicidade , Células-Tronco Embrionárias/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , MicroRNAs/genética , Trifosfato de Adenosina/metabolismo , Idoso , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Meios de Cultura/metabolismo , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Feminino , Marcadores Genéticos , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , L-Lactato Desidrogenase/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...