Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430407

RESUMO

Flavivirus comprises globally emerging and re-emerging pathogens such as Zika virus (ZIKV), Dengue virus (DENV), and West Nile virus (WNV), among others. Although some vaccines are available, there is an unmet medical need as no effective antiviral treatment has been approved for flaviviral infections. The development of host-directed antivirals (HDAs) targeting host factors that are essential for viral replication cycle offers the opportunity for the development of broad-spectrum antivirals. In the case of flaviviruses, recent studies have revealed that neutral sphingomyelinase 2, (nSMase2), involved in lipid metabolism, plays a key role in WNV and ZIKV infection. As a proof of concept, we have determined the antiviral activity of the non-competitive nSMase2 inhibitor DPTIP against WNV and ZIKV virus. DPTIP showed potent antiviral activity with EC50 values of 0.26 µM and 1.56 µM for WNV and ZIKV, respectively. In order to unravel the allosteric binding site of DPTIP in nSMase2 and the details of the interaction, computational studies have been carried out. These studies have revealed that DPTIP could block the DK switch in nSMase2. Moreover, the analysis of the residues contributing to the binding identified His463 as a crucial residue. Interestingly, the inhibitory activity of DPTIP on the H463A mutant protein supported our hypothesis. Thus, an allosteric cavity in nSMase2 has been identified that can be exploited for the development of new inhibitors with anti-flaviviral activity.


Assuntos
Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Humanos , Esfingomielina Fosfodiesterase , Vírus do Nilo Ocidental/fisiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Sítio Alostérico
2.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35890135

RESUMO

The superimposition of the X-ray complexes of cyclohexanediones (i.e., TUB015), described by our research group, and nocodazole, within the colchicine binding site of tubulin provided an almost perfect overlap of both ligands. This structural information led us to propose hybrids of TUB015 and nocodazole using a salicylanilide core structure. Interestingly, salicylanilides, such as niclosamide, are well-established signal transducers and activators of transcription (STAT3) inhibitors with anticancer properties. Thus, different compounds with this new scaffold have been synthesized with the aim to identify compounds inhibiting tubulin polymerization and/or STAT3 signaling. As a result, we have identified new salicylanilides (6 and 16) that showed significant antiproliferative activity against a panel of cancer cells. Both compounds were able to reduce the levels of p-STAT3Tyr705 without affecting the total expression of STAT3. While compound 6 inhibited tubulin polymerization and arrested the cell cycle of DU145 cells at G2/M, similar to TUB015, compound 16 showed a more potent effect on inhibiting STAT3 phosphorylation and arrested the cell cycle at G1/G0, similar to niclosamide. In both cases, no toxicity towards PBMC cells was detected. Thus, the salicylanilides described here represent a new class of antiproliferative agents affecting tubulin polymerization and/or STAT3 phosphorylation.

3.
ACS Med Chem Lett ; 13(1): 5-10, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35059112

RESUMO

The COVID pandemic has evidenced how vulnerable we are to emerging infectious diseases and how short our current armamentarium is. Flavivirus, single stranded RNA viruses transmitted by arthropods, are considered a global health challenge. No drugs to treat these infections have been approved. In this Viewpoint, we analyze the advantages and disadvantages of two different, but probably also complementary, therapeutic approaches: virus-targeting antivirals and host-targeting drugs.

4.
ACS Chem Neurosci ; 13(2): 275-287, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34962383

RESUMO

Aggregation of mutant huntingtin, because of an expanded polyglutamine track, underlies the cause of neurodegeneration in Huntington disease (HD). However, it remains unclear how some alterations at the cellular level lead to specific structural changes in HD brains. In this context, the neuroprotective effect of the activation of AMP-activated protein kinase (AMPK) appears to be a determinant factor in several neurodegenerative diseases, including HD. In the present work, we describe a series of indole-derived compounds able to activate AMPK at the cellular level. By using animal models of HD (both worms and mice), we demonstrate the in vivo efficacy of one of these compounds (IND1316), confirming that it can reduce the neuropathological symptoms of this disease. Taken together, in vivo results and in silico studies of druggability, allow us to suggest that IND1316 could be considered as a promising new lead compound for the treatment of HD and other central nervous system diseases in which the activation of AMPK results in neuroprotection.


Assuntos
Doença de Huntington , Fármacos Neuroprotetores , Proteínas Quinases Ativadas por AMP , Animais , Modelos Animais de Doenças , Proteína Huntingtina/genética , Doença de Huntington/tratamento farmacológico , Indóis/farmacologia , Camundongos , Fármacos Neuroprotetores/farmacologia
5.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34832913

RESUMO

The nuclear export receptor exportin-1 (XPO1, CRM1) mediates the nuclear export of proteins that contain a leucine-rich nuclear export signal (NES) towards the cytoplasm. XPO1 is considered a relevant target in different human diseases, particularly in hematological malignancies, tumor resistance, inflammation, neurodegeneration and viral infections. Thus, its pharmacological inhibition is of significant therapeutic interest. The best inhibitors described so far (leptomycin B and SINE compounds) interact with XPO1 through a covalent interaction with Cys528 located in the NES-binding cleft of XPO1. Based on the well-established feature of chalcone derivatives to react with thiol groups via hetero-Michael addition reactions, we have synthesized two series of chalcones. Their capacity to react with thiol groups was tested by incubation with GSH to afford the hetero-Michael adducts that evolved backwards to the initial chalcone through a retro-Michael reaction, supporting that the covalent interaction with thiols could be reversible. The chalcone derivatives were evaluated in antiproliferative assays against a panel of cancer cell lines and as XPO1 inhibitors, and a good correlation was observed with the results obtained in both assays. Moreover, no inhibition of the cargo export was observed when the two prototype chalcones 9 and 10 were tested against a XPO1-mutated Jurkat cell line (XPO1C528S), highlighting the importance of the Cys at the NES-binding cleft for inhibition. Finally, their interaction at the molecular level at the NES-binding cleft was studied by applying the computational tool CovDock.

6.
Molecules ; 24(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766444

RESUMO

New substituted benzo[g]indazoles functionalized with a 6-nitro and 6-amino groups have been synthesized by the reaction of benzylidene tetralones with hydrazine in acetic acid. The resulting conformationally-constrained compounds were evaluated for their antiproliferative activity against selected cancer cell lines. The nitro-based indazoles 11a, 11b, 12a and 12b have shown IC50 values between 5-15 µM against the lung carcinoma cell line NCI-H460. Moreover, the nitro compounds were tested for antibacterial activity where compounds 12a and 13b have shown MIC values of 250 and 62.5 µg/mL against N. gonorrhoeae with no hemolytic activity in human red blood cells (RBC).


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Indazóis/química , Neoplasias/tratamento farmacológico , Antibacterianos/síntese química , Antineoplásicos/síntese química , Hemólise/efeitos dos fármacos , Humanos , Neoplasias/patologia , Células Tumorais Cultivadas
7.
Expert Opin Drug Discov ; 14(9): 855-866, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31177861

RESUMO

Introduction: Chikungunya virus (CHIKV) is the etiological agent of a (re)emerging arbovirus infection, chikungunya fever (CHIKF), that represents a serious health problem worldwide for which no antivirals are available. Areas covered: This review covers the efforts performed so far to identify and optimize small molecules that could be useful as antivirals for CHIKV infection, including drug repositioning, phenotypic screening, target-based screening, and structure-based design. This is accompanied by a brief presentation of the replicative cycle of the virus and the role of the viral proteins in CHIKV replication. Expert opinion: In the last decade, and particularly since CHIKV reached the Americas, significant efforts have been made to identify compounds that effectively inhibit CHIKV replication. Unfortunately, these efforts have not led to a clinical candidate. For the years to come, more basic research is required to allow a better understanding of the interplay of the viral proteins among them and with cellular components. Structural information is missing for most of the targets so that structure-based drug design, a strategy that has provided good results in other antiviral fields, has been scarcely applied to this alphavirus.


Assuntos
Antivirais/administração & dosagem , Febre de Chikungunya/tratamento farmacológico , Descoberta de Drogas/métodos , Animais , Antivirais/química , Antivirais/farmacologia , Febre de Chikungunya/virologia , Vírus Chikungunya/efeitos dos fármacos , Vírus Chikungunya/isolamento & purificação , Desenho de Fármacos , Humanos , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
8.
ACS Med Chem Lett ; 10(4): 639-643, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30996810

RESUMO

Based on hit-likeness and chemical diversity, a number of chalcones and chalcone-mimetic compounds were selected as putative Notch inhibitors. The evaluation of the antiproliferative effect combined with the inhibition of Notch1 expression in KOPTK1 cell line identified compound 18, featuring a tetrahydronaphthalene-based scaffold, as a new promising Notch-blocking agent.

9.
Eur J Med Chem ; 171: 195-208, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30921759

RESUMO

Microtubule targeting agents represent a very active arena in the development of anticancer agents. In particular, compounds binding at the colchicine site in tubulin are being deeply studied, and the structural information recently available on this binding site allows structure-directed design of new ligands. Structural comparison of our recently reported high resolution X-Ray structure of the cyclohexanedione derivative TUB075 bound to tubulin and the tubulin-DAMA-colchicine complex has revealed a conformational change in the αT5 loop. By a grid-based computational analysis of the tubulin-DAMA-colchicine binding site, we have identified a new favourable binding area in the colchicine-site that was unexplored by our lead TUB075. Thus, based on a structure-guided design, new cyclohexanedione derivatives have been synthesized and tested for tubulin binding and in cellular assays. As a result, we have identified diphenyl ether derivatives with IC50 values around 10-40 nM against three different tumor cell lines and affinity constants for tubulin similar to that of colchicine around 107 M-1. As expected, they halted the cell cycle progression at G2/M phase at concentrations as low as 0.08 µM.


Assuntos
Antineoplásicos/farmacologia , Colchicina/farmacologia , Cicloexanonas/farmacologia , Éteres Fenílicos/farmacologia , Tubulina (Proteína)/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colchicina/química , Cristalografia por Raios X , Cicloexanonas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Éteres Fenílicos/síntese química , Éteres Fenílicos/química , Relação Estrutura-Atividade
10.
Sci Rep ; 8(1): 4370, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29531259

RESUMO

The key metabolic sensor adenosine monophosphate-dependent kinase (AMPK) has emerged as a promising therapeutic target for cancer prevention and treatment. Besides its role in energy homeostasis, AMPK blocks cell cycle, regulates autophagy and suppresses the anabolic processes required for rapid cell growth. AMPK is especially relevant in prostate cancer in which activation of lipogenic pathways correlate with tumor progression and aggressiveness. This study reports the discovery of a new series of 2-oxindole derivatives whose AMPK modulatory ability, as well as the antitumoral profile in prostate cancer cells, was evaluated. One of the assayed compounds, compound 8c, notably activated AMPK in cultured PC-3, DU145 and LNCaP prostate cancer cells. Likewise, compound 8c caused PC-3, DU145 and LNCaP cells viability inhibition. Selective knocking down of α1 or α2 isoforms as well as in vitro assays using human recombinant α1ß1γ1 or α2ß1γ1 AMPK isoforms revealed that compound 8c exhibit preference for AMPKα1. Consistent with efficacy at the cellular level, compound 8c was potent in suppressing the growth of PC-3 xenograft tumors. In conclusion, our results show that a new 2-oxindole fluorinated derivative exerts potent in vivo antitumor actions against prostate cancer cells, indicating a promising clinical therapeutic strategy for the treatment of androgen-independent prostate cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Oxindóis/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Halogenação , Humanos , Masculino , Oxindóis/síntese química , Oxindóis/química , Fosforilação , Isoformas de Proteínas
11.
Sci Rep ; 8(1): 4242, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523799

RESUMO

Microtubule-targeting agents that bind at the colchicine-site of tubulin are of particular interest in antitumoral therapy due to their dual mechanism of action as antimitotics and vascular disrupting agents. Cyclohexanediones derivatives have been described as a new family of colchicine-domain binders with an association constant to tubulin similar to that of colchicine. Here, the high-resolution structures of tubulin in complex with cyclohexanediones TUB015 and TUB075 were solved by X-ray crystallography. A detailed analysis of the tubulin-TUB075 interaction by means of computational affinity maps allowed the identification of two additional regions at the binding site that were addressed with the design and synthesis of a new series of cyclohexanediones with a distal 2-substituted benzofurane. These new compounds showed potent antiproliferative activity with IC50 values in the nM range, arrested cell cycle progression at the G2/M phase and induced apoptosis at sub µM concentrations. Moreover, they caused the destruction of a preformed vascular network in vitro and inhibited the migration of endothelial cells at non-toxic concentrations. Finally, these compounds displayed high affinity for tubulin as substantiated by a K b value of 2.87 × 108 M-1 which, to the best of our knowledge, represents the highest binding constant measured to date for a colchicine-domain ligand.


Assuntos
Cicloexanonas/síntese química , Moduladores de Tubulina/síntese química , Tubulina (Proteína)/química , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular , Colchicina/química , Colchicina/farmacologia , Cicloexanonas/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
12.
Eur J Med Chem ; 148: 337-348, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29471122

RESUMO

Based on the conformation of the α-methyl chalcone TUB091 in its complex with tubulin, a series of conformational mimetics have been designed and synthesized where the methyl group of the chalcone has been fused to phenyl ring B resulting in 1,2,3,4-tetrahydronaphthalen-2-yl aryl ketones. Among the synthesized compounds, the 5-amino-6-methoxy derivative, with a similar substitution pattern to that of TUB091, showed antiproliferative activity around 20 nM against tumor and endothelial cells. Tubulin binding experiments confirmed its binding to tubulin at the colchicine site with a Kb of 2.4 × 106 M-1 resulting in the inhibition of the in vitro assembly of purified tubulin. Moreover, based on the recently reported complex of combretastatin A4 (CA4) with tubulin, a comparative analysis of the binding mode of CA4 and the α-methyl chalcone to tubulin has been performed.


Assuntos
Antineoplásicos/síntese química , Chalconas/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzodioxóis/metabolismo , Sítios de Ligação , Biomimética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Células Endoteliais/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Conformação Proteica , Moduladores de Tubulina
13.
ACS Infect Dis ; 4(4): 605-619, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29406692

RESUMO

The re-emergence of chikungunya virus (CHIKV) is a serious global health threat. CHIKV is an alphavirus that is transmitted to humans by Aedes mosquitoes; therefore, their wide distribution significantly contributes to the globalization of the disease. Unfortunately, no effective antiviral drugs are available. We have identified a series of 3-aryl-[1,2,3]triazolo[4,5- d]pyrimidin-7(6 H)-ones as selective inhibitors of CHIKV replication. New series of compounds have now been synthesized with the aim to improve their physicochemical properties and to potentiate the inhibitory activity against different CHIKV strains. Among these newly synthesized compounds modified at position 3 of the aryl ring, tetrahydropyranyl and N- t-butylpiperidine carboxamide derivatives have shown to elicit potent antiviral activity against different clinically relevant CHIKV isolates with 50% effective concentration (EC50) values ranging from 0.30 to 4.5 µM in Vero cells, as well as anti-CHIKV activity in human skin fibroblasts (EC50 = 0.1 µM), a clinically relevant cell system for CHIKV infection.


Assuntos
Antivirais/isolamento & purificação , Vírus Chikungunya/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Fenômenos Químicos , Vírus Chikungunya/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular
14.
Antiviral Res ; 144: 216-222, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28619679

RESUMO

Chikungunya virus (CHIKV) is a re-emerging alphavirus transmitted to humans by Aedes mosquitoes. Since 2005, CHIKV has been spreading worldwide resulting in epidemics in Africa, the Indian Ocean islands, Asia and more recently in the Americas. CHIKV is thus considered as a global health concern. There is no specific vaccine or drug available for the treatment of this incapacitating viral infection. We previously identified 3-aryl-[1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones as selective inhibitors of CHIKV replication and proposed the viral capping enzyme nsP1 as a target. This work describes the synthesis of novel series of related compounds carrying at the aryl moiety a methylketone and related oximes combined with an ethyl or an ethyl-mimic at 5-position of the triazolopyrimidinone. These compounds have shown antiviral activity against different CHIKV isolates in the very low µM range based on both virus yield reduction and virus-induced cell-killing inhibition assays. Moreover, these antivirals inhibit the in vitro guanylylation of alphavirus nsP1, as determined by Western blot using an anti-cap antibody. Thus, the data obtained seem to indicate that the anti-CHIKV activity might be related to the inhibition of this crucial step in the viral RNA capping machinery.


Assuntos
Antivirais/farmacologia , Vírus Chikungunya/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Chlorocebus aethiops , Testes de Sensibilidade Microbiana , Células Vero
15.
Oncotarget ; 8(9): 14325-14342, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-27224920

RESUMO

We investigated the microtubule-destabilizing, vascular-targeting, anti-tumor and anti-metastatic activities of a new series of chalcones, whose prototype compound is (E)-3-(3''-amino-4''-methoxyphenyl)-1-(5'-methoxy-3',4'-methylendioxyphenyl)-2-methylprop-2-en-1-one (TUB091). X-ray crystallography showed that these chalcones bind to the colchicine site of tubulin and therefore prevent the curved-to-straight structural transition of tubulin, which is required for microtubule formation. Accordingly, TUB091 inhibited cancer and endothelial cell growth, induced G2/M phase arrest and apoptosis at 1-10 nM. In addition, TUB091 displayed vascular disrupting effects in vitro and in the chicken chorioallantoic membrane (CAM) assay at low nanomolar concentrations. A water-soluble L-Lys-L-Pro derivative of TUB091 (i.e. TUB099) showed potent antitumor activity in melanoma and breast cancer xenograft models by causing rapid intratumoral vascular shutdown and massive tumor necrosis. TUB099 also displayed anti-metastatic activity similar to that of combretastatin A4-phosphate. Our data indicate that this novel class of chalcones represents interesting lead molecules for the design of vascular disrupting agents (VDAs). Moreover, we provide evidence that our prodrug approach may be valuable for the development of anti-cancer drugs.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Benzodioxóis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Chalcona/farmacologia , Chalconas/farmacologia , Dipeptídeos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Tubulina (Proteína)/metabolismo , Animais , Apoptose/efeitos dos fármacos , Benzodioxóis/síntese química , Sítios de Ligação , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/secundário , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Chalconas/síntese química , Cristalografia por Raios X , Dipeptídeos/síntese química , Endotélio Vascular/patologia , Feminino , Humanos , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/patologia , Camundongos , Camundongos SCID , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Pró-Fármacos/farmacologia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Moduladores de Tubulina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Med Chem ; 59(19): 8685-8711, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27348355

RESUMO

The unique characteristics of the tumor vasculature offer the possibility to selectively target tumor growth and vascularization using tubulin-destabilizing agents. Evidence accumulated with combretastatin A-4 (CA-4) and its prodrug CA-4P support the therapeutic value of compounds sharing this mechanism of action. However, the chemical instability and poor solubility of CA-4 demand alternative compounds that are able to surmount these limitations. This Perspective illustrates the different classes of compounds that behave similar to CA-4, analyzes their binding mode to αß-tubulin according to recently available structural complexes, and includes described approaches to improve their delivery. In addition, dissecting the mechanism of action of CA-4 and analogues allows a closer insight into the advantages and drawbacks associated with these tubulin-destabilizing agents that behave as vascular disrupting agents (VDAs).


Assuntos
Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Bibenzilas/química , Bibenzilas/farmacologia , Bibenzilas/uso terapêutico , Descoberta de Drogas/métodos , Hemodinâmica/efeitos dos fármacos , Humanos , Modelos Moleculares , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/uso terapêutico
17.
Eur J Med Chem ; 87: 421-8, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25282265

RESUMO

A series of novel 6-phenylaminopurines have been efficiently synthesized in 3 steps exploring different groups at positions 2, 8 and 9 of the purine ring and at the exocyclic nitrogen atom at position 6. Among the newly described purines, five compounds showed antiproliferative activity with IC50 values below 10 µM, the tetrahydroquinoline derivative at position 6 of phenylaminopurine being the most active of the series in the six cell lines tested. Moreover, the compounds induced G2/M phase arrest in human cervical carcinoma HeLa cells as reported for tubulin depolymerizing agents.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Purinas/síntese química , Purinas/farmacologia , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Humanos , Modelos Moleculares , Conformação Molecular , Purinas/química , Eletricidade Estática , Relação Estrutura-Atividade
18.
Eur J Med Chem ; 82: 459-65, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24929343

RESUMO

8-Arylinosines have been scarcely studied for therapeutic purposes, probably due to difficulties in their synthesis. The recently described direct arylation reaction at position 8 of purine nucleosides has been employed to synthesize a series of 8-aryl and 8-pyridylinosines. These compounds have been studied for hydrolytic stability and subjected to biological evaluation. Three compounds have shown a pronounced specific inhibition of Plasmodium falciparum-encoded purine nucleoside phosphorylase, an important target for antimalarial chemotherapy.


Assuntos
Antibacterianos/farmacologia , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Inosina/farmacologia , Plasmodium falciparum/enzimologia , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antivirais/síntese química , Antivirais/química , Linhagem Celular Tumoral , Chlorocebus aethiops , Vírus de DNA/efeitos dos fármacos , Cães , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Células HeLa , Humanos , Inosina/análogos & derivados , Inosina/síntese química , Células Madin Darby de Rim Canino , Testes de Sensibilidade Microbiana , Micro-Ondas , Conformação Molecular , Mycoplasma hyorhinis/efeitos dos fármacos , Purina-Núcleosídeo Fosforilase/metabolismo , Vírus de RNA/efeitos dos fármacos , Células Vero
19.
J Med Chem ; 57(10): 4000-8, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24800626

RESUMO

Chikungunya virus (CHIKV) is a re-emerging Alphavirus that is transmitted to humans by Aedes mosquitoes. Currently, there are still no drugs or vaccines available for the treatment or prevention of this disease. Although traditionally restricted to Africa and Asia, the adaptation of the virus to Aedes albopictus, a mosquito species with an almost worldwide distribution, has contributed to the geographical spread of this virus in the past decade. Here, we report on a new family of compounds named [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones that inhibit CHIKV replication in the low micromolar range with no toxicity to the host (Vero) cells. The most potent compound in this series has an EC50 value below 1 µM with no cytotoxicity detected up to 668 µM, therefore affording a selectivity index greater than 600. Interestingly, the compounds have little or no antiviral activity on the replication of other members of the Togaviridae family. The exploration and study of this class of selective inhibitors of CHIKV replication will contribute to deeper insights into the CHIKV life cycle and may be a first step toward the development of a clinical drug candidate.


Assuntos
Antivirais/síntese química , Vírus Chikungunya/efeitos dos fármacos , Pirimidinonas/síntese química , Triazóis/síntese química , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Pirimidinonas/farmacologia , Relação Estrutura-Atividade , Triazóis/farmacologia , Células Vero
20.
J Med Chem ; 57(10): 3924-38, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24773591

RESUMO

Vascular disrupting agents (VDAs) constitute an innovative anticancer therapy that targets the tumor endothelium, leading to tumor necrosis. Our approach for the identification of new VDAs has relied on a ligand 3-D shape similarity virtual screening (VS) approach using the ROCS program as the VS tool and as query colchicine and TN-16, which both bind the α,ß-tubulin dimer. One of the hits identified, using TN-16 as query, has been explored by the synthesis of its structural analogues, leading to 2-(1-((2-methoxyphenyl)amino)ethylidene)-5-phenylcyclohexane-1,3-dione (compound 16c) with an IC50 = 0.09 ± 0.01 µM in HMEC-1 and BAEC, being 100-fold more potent than the initial hit. Compound 16c caused cell cycle arrest in the G2/M phase and interacted with the colchicine-binding site in tubulin, as confirmed by a competition assay with N,N'-ethylenebis(iodoacetamide) and by fluorescence spectroscopy. Moreover, 16c destroyed an established endothelial tubular network at 1 µM and inhibited the migration and invasion of human breast carcinoma cells at 0.4 µM. In conclusion, our approach has led to a new chemotype of promising antiproliferative compounds with antimitotic and potential VDA properties.


Assuntos
Antineoplásicos/síntese química , Colchicina/metabolismo , Cicloexanonas/síntese química , Avaliação Pré-Clínica de Medicamentos/métodos , Moduladores de Tubulina/síntese química , Antineoplásicos/farmacologia , Sítios de Ligação , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cicloexanonas/farmacologia , Estabilidade de Medicamentos , Humanos , Invasividade Neoplásica , Fuso Acromático/efeitos dos fármacos , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...