Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 789, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192240

RESUMO

BACKGROUND: Kidneys are at risk from drug-induced toxicity, with a significant proportion of acute kidney injury (AKI) linked to medications, particularly cisplatin. Existing cytoprotective drugs for cisplatin-AKI carry side effects, prompting a search for better biological therapies. Mesenchymal Stem Cells (MSCs) are under consideration given their regenerative properties, yet their clinical application has not achieved their full potential, mainly due to variability in the source of MSC tested. In addition, translating treatments from rodent models to humans remains challenging due to a lack of standardized dosing and understanding potential differential responses to cisplatin between animal strains. METHOD: In the current study, we performed a time-course analysis of the effect of cisplatin across different mouse strains and evaluated gender related differences to create a robust preclinical model that could then be used to explore the therapeutic efficacy of different sources of MSCs for their ability to reverse AKI. RESULT: Our data indicated that different mouse strains produce differential responses to the same cisplatin dosing regimen. Despite this, we did not observe any gender-related bias towards cisplatin nephrotoxicity. Furthermore, our time-course analysis identified that cisplatin-induced inflammation was driven by a strong CXCL1 response, which was used as a putative biomarker to evaluate the comparative therapeutic efficacy of different MSC sources in reversing AKI. Our data indicates that UC-MSCs have a stronger anti-inflammatory effect compared to BM-MSCs and AD-MSCs, which helped to ameliorate cisplatin-AKI. CONCLUSION: Overall, our data underscores the importance of using an optimized preclinical model of cisplatin-AKI to test different therapies. We identified CXCL1 as a potential biomarker of cisplatin-AKI and identified the superior efficacy of UC-MSCs in mitigating cisplatin-AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Modelos Animais de Doenças , Células-Tronco Mesenquimais , Cisplatino/efeitos adversos , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Masculino , Feminino , Camundongos Endogâmicos C57BL , Fatores de Tempo , Quimiocina CXCL1/metabolismo , Camundongos , Rim/efeitos dos fármacos , Rim/patologia , Inflamação/patologia
2.
J Inflamm (Lond) ; 21(1): 20, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867277

RESUMO

Autoimmune diseases are caused by an imbalance in the immune system, producing autoantibodies that cause inflammation leading to tissue damage and organ dysfunction. Systemic Lupus Erythematosus (SLE) is one of the most common autoimmune diseases and a major contributor to patient morbidity and mortality. Although many drugs manage the disease, curative therapy remains elusive, and current treatment regimens have substantial side effects. Recently, the therapeutic potential of exosomes has been extensively studied, and novel evidence has been demonstrated. A direct relationship between exosome contents and their ability to regulate the immune system, inflammation, and angiogenesis. The unique properties of extracellular vesicles, such as biomolecule transportation, biodegradability, and stability, make exosomes a promising treatment candidate for autoimmune diseases, particularly SLE. This review summarizes the structural features of exosomes, the isolation/purification/quantification method, their origin, effect, immune regulation, a critical consideration for selecting an appropriate source, and their therapeutic mechanisms in SLE.

3.
Stem Cells Transl Med ; 13(6): 559-571, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38530131

RESUMO

Mesenchymal stem cells (MSCs) are a promising therapy to potentially treat diabetes given their potent anti-inflammatory and immune-modulatory properties. While these regenerative cells have shown considerable promise in cell culture, their clinical translation has been challenging. In part, this can be attributed to these cells not reaching the pancreas to exert their regenerative effects following conventional intravenous (IV) injection, with the majority of cells being trapped in the lungs in the pulmonary first-pass effect. In the present study, we will therefore examine whether direct delivery of MSCs to the pancreas via an intra-arterial (IA) injection can improve their therapeutic efficacy. Using a mouse model, in which repetitive low doses of STZ induced a gentle, but progressive, hyperglycemia, we tested bone marrow-derived MSCs (BM-MSCs) which we have shown are enriched with pro-angiogenic and immunomodulatory factors. In cell culture studies, BM-MSCs were shown to preserve islet viability and function following exposure to proinflammatory cytokines (IFN-γ, IL-1ß, and TNF-α) through an increase in pAkt. When tested in our animal model, mice receiving IV BM-MSCs were not able to mitigate the effects of STZ, however those which received the same dose and batch of cells via IA injection were able to maintain basal and dynamic glycemic control, to similar levels as seen in healthy control animals, over 10 days. This study shows the importance of considering precision delivery approaches to ensure cell-based therapies reach their intended targets to enable them to exert their therapeutic effects.


Assuntos
Diabetes Mellitus Experimental , Injeções Intra-Arteriais , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Humanos , Camundongos , Diabetes Mellitus Experimental/terapia , Pâncreas , Células da Medula Óssea/citologia , Masculino , Camundongos Endogâmicos C57BL , Citocinas/metabolismo
4.
Biomolecules ; 13(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37189396

RESUMO

Pancreatic ß cells are central to glycemic regulation through insulin production. Studies show autophagy as an essential process in ß cell function and fate. Autophagy is a catabolic cellular process that regulates cell homeostasis by recycling surplus or damaged cell components. Impaired autophagy results in ß cell loss of function and apoptosis and, as a result, diabetes initiation and progress. It has been shown that in response to endoplasmic reticulum stress, inflammation, and high metabolic demands, autophagy affects ß cell function, insulin synthesis, and secretion. This review highlights recent evidence regarding how autophagy can affect ß cells' fate in the pathogenesis of diabetes. Furthermore, we discuss the role of important intrinsic and extrinsic autophagy modulators, which can lead to ß cell failure.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus/metabolismo , Insulina/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Autofagia/fisiologia
5.
Stem Cell Reports ; 18(1): 190-204, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36493779

RESUMO

Mesenchymal stem cells (MSCs) are gaining increasing prominence as an effective regenerative cellular therapy. However, ensuring consistent and reliable effects across clinical populations has proved to be challenging. In part, this can be attributed to heterogeneity in the intrinsic molecular and regenerative signature of MSCs, which is dependent on their source of origin. The present work uses integrated omics-based profiling, at different functional levels, to compare the anti-inflammatory, immunomodulatory, and angiogenic properties between MSCs from neonatal (umbilical cord MSC [UC-MSC]) and adult (adipose tissue MSC [AD-MSC], and bone marrow MSC [BM-MSC]) sources. Using multi-parametric analyses, we identified that UC-MSCs promote a more robust host innate immune response; in contrast, adult-MSCs appear to facilitate remodeling of the extracellular matrix (ECM) with stronger activation of angiogenic cascades. These data should help facilitate the standardization of source-specific MSCs, such that their regenerative signatures can be confidently used to target specific disease processes.


Assuntos
Células-Tronco Adultas , Células-Tronco Mesenquimais , Recém-Nascido , Humanos , Proteoma , Transcriptoma , Perfilação da Expressão Gênica , Células da Medula Óssea
6.
Front Cell Dev Biol ; 10: 1006295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313578

RESUMO

In recent years, mesenchymal stromal cells (MSCs) have generated a lot of attention due to their paracrine and immuno-modulatory properties. mesenchymal stromal cells derived from the umbilical cord (UC) are becoming increasingly recognized as having increased therapeutic potential when compared to mesenchymal stromal cells from other sources. The purpose of this review is to provide an overview of the various compartments of umbilical cord tissue from which mesenchymal stromal cells can be isolated, the differences and similarities with respect to their regenerative and immuno-modulatory properties, as well as the single cell transcriptomic profiles of in vitro expanded and freshly isolated umbilical cord-mesenchymal stromal cells. In addition, we discuss the therapeutic potential and biodistribution of umbilical cord-mesenchymal stromal cells following systemic administration while providing an overview of pre-clinical and clinical trials involving umbilical cord-mesenchymal stromal cells and their associated secretome and extracellular vesicles (EVs). The clinical applications of umbilical cord-mesenchymal stromal cells are also discussed, especially in relation to obstacles and potential solutions for their effective translation from bench to bedside.

7.
Front Mol Neurosci ; 15: 1011225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277497

RESUMO

Alzheimer's disease (AD) is a major cause of age-related dementia and is characterized by progressive brain damage that gradually destroys memory and the ability to learn, which ultimately leads to the decline of a patient's ability to perform daily activities. Although some of the pharmacological treatments of AD are available for symptomatic relief, they are not able to limit the progression of AD and have several side effects. Mesenchymal stem/stromal cells (MSCs) could be a potential therapeutic option for treating AD due to their immunomodulatory, anti-inflammatory, regenerative, antioxidant, anti-apoptotic, and neuroprotective effects. MSCs not only secret neuroprotective and anti-inflammatory factors to promote the survival of neurons, but they also transfer functional mitochondria and miRNAs to boost their bioenergetic profile as well as improve microglial clearance of accumulated protein aggregates. This review focuses on different clinical and preclinical studies using MSC as a therapy for treating AD, their outcomes, limitations and the strategies to potentiate their clinical translation.

9.
ACS Appl Mater Interfaces ; 13(45): 53618-53629, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34751556

RESUMO

Type-1 diabetes (T1DM) is a chronic metabolic disorder resulting from the autoimmune destruction of ß cells. The current standard of care requires multiple, daily injections of insulin and accurate monitoring of blood glucose levels (BGLs); in some cases, this results in diminished patient compliance and increased risk of hypoglycemia. Herein, we engineered hierarchically structured particles comprising a poly(lactic-co-glycolic) acid (PLGA) prismatic matrix, with a 20 × 20 µm base, encapsulating 200 nm insulin granules. Five configurations of these insulin-microPlates (INS-µPLs) were realized with different heights (5, 10, and 20 µm) and PLGA contents (10, 40, and, 60 mg). After detailed physicochemical and biopharmacological characterizations, the tissue-compliant 10H INS-µPL, realized with 10 mg of PLGA, presented the most effective release profile with ∼50% of the loaded insulin delivered at 4 weeks. In diabetic mice, a single 10H INS-µPL intraperitoneal deposition reduced BGLs to that of healthy mice within 1 h post-implantation (167.4 ± 49.0 vs 140.0 ± 9.2 mg/dL, respectively) and supported normoglycemic conditions for about 2 weeks. Furthermore, following the glucose challenge, diabetic mice implanted with 10H INS-µPL successfully regained glycemic control with a significant reduction in AUC0-120min (799.9 ± 134.83 vs 2234.60 ± 82.72 mg/dL) and increased insulin levels at 7 days post-implantation (1.14 ± 0.11 vs 0.38 ± 0.02 ng/mL), as compared to untreated diabetic mice. Collectively, these results demonstrate that INS-µPLs are a promising platform for the treatment of T1DM to be further optimized with the integration of smart glucose sensors.


Assuntos
Materiais Biocompatíveis/farmacologia , Glicemia/análise , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Ácido Poliglicólico/farmacologia , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/metabolismo , Relação Dose-Resposta a Droga , Hipoglicemia/induzido quimicamente , Hipoglicemia/tratamento farmacológico , Hipoglicemia/metabolismo , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Insulina/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Ácido Poliglicólico/química , Estreptozocina
10.
Nat Nanotechnol ; 16(7): 820-829, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33795849

RESUMO

The poor transport of molecular and nanoscale agents through the blood-brain barrier together with tumour heterogeneity contribute to the dismal prognosis in patients with glioblastoma multiforme. Here, a biodegradable implant (µMESH) is engineered in the form of a micrometre-sized poly(lactic-co-glycolic acid) mesh laid over a water-soluble poly(vinyl alcohol) layer. Upon poly(vinyl alcohol) dissolution, the flexible poly(lactic-co-glycolic acid) mesh conforms to the resected tumour cavity as docetaxel-loaded nanomedicines and diclofenac molecules are continuously and directly released into the adjacent tumour bed. In orthotopic brain cancer models, generated with a conventional, reference cell line and patient-derived cells, a single µMESH application, carrying 0.75 mg kg-1 of docetaxel and diclofenac, abrogates disease recurrence up to eight months after tumour resection, with no appreciable adverse effects. Without tumour resection, the µMESH increases the median overall survival (∼30 d) as compared with the one-time intracranial deposition of docetaxel-loaded nanomedicines (15 d) or 10 cycles of systemically administered temozolomide (12 d). The µMESH modular structure, for the independent coloading of different molecules and nanomedicines, together with its mechanical flexibility, can be exploited to treat a variety of cancers, realizing patient-specific dosing and interventions.


Assuntos
Implantes Absorvíveis , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Encefálicas/tratamento farmacológico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular , Diclofenaco/farmacocinética , Diclofenaco/farmacologia , Docetaxel/farmacocinética , Docetaxel/farmacologia , Implantes de Medicamento/farmacocinética , Implantes de Medicamento/farmacologia , Feminino , Humanos , Camundongos , Camundongos Nus , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Biofabrication ; 13(3)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33455953

RESUMO

Islet transplantation is a promising approach to enable type 1 diabetic patients to attain glycemic control independent of insulin injections. However, up to 60% of islets are lost immediately following transplantation. To improve this outcome, islets can be transplanted within bioscaffolds, however, synthetic bioscaffolds induce an intense inflammatory reaction which can have detrimental effects on islet function and survival. In the present study, we first improved the biocompatibility of polydimethylsiloxane (PDMS) bioscaffolds by coating them with collagen. To reduce the inflammatory response to PDMS bioscaffolds, we then enriched the bioscaffolds with dexamethasone-loaded microplates (DEX-µScaffolds). These DEX-microplates have the ability to release DEX in a sustained manner over 7 weeks within a therapeutic range that does not affect the glucose responsiveness of the islets but which minimizes inflammation in the surrounding microenvironment. The bioscaffold showed excellent mechanical properties that enabled it to resist pore collapse thereby helping to facilitate islet seeding and its handling for implantation, and subsequent engraftment, within the epididymal fat pad (EFP). Following the transplantation of islets into the EFP of diabetic mice using DEX-µScaffolds there was a return in basal blood glucose to normal values by day 4, with normoglycemia maintained for 30 d. Furthermore, these animals demonstrated a normal dynamic response to glucose challenges with histological evidence showing reduced pro-inflammatory cytokines and fibrotic tissue surrounding DEX-µScaffolds at the transplantation site. In contrast, diabetic animals transplanted with either islets alone or islets in bioscaffolds without DEX microplates were not able to regain glycemic control during basal conditions with overall poor islet function. Taken together, our data show that coating PDMS bioscaffolds with collagen, and enriching them with DEX-microplates, significantly prolongs and enhances islet function and survival.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Colágeno/farmacologia , Dexametasona/farmacologia , Diabetes Mellitus Experimental/terapia , Dimetilpolisiloxanos , Humanos , Insulina , Camundongos
12.
Mater Sci Eng C Mater Biol Appl ; 119: 111615, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321658

RESUMO

Cellular therapy, whereby cells are transplanted to replace or repair damaged tissues and/or cells, is now becoming a viable therapeutic option to treat many human diseases. Silicones, such as polydimethylsiloxane (PDMS), consist of a biocompatible, inert, non-degradable synthetic polymer, characterized by the presence of a silicon­oxygen­silicon (Si-O-Si) linkage in the backbone. Silicones have been commonly used in several biomedical applications such as soft tissue implants, microfluidic devices, heart valves and 3D bioscaffolds. Silicone macroporous bioscaffolds can be made with open, interconnected pores which can house cells and facilitate the formation of a dense vascular network inside the bioscaffold to aid in its engraftment and integration into the host tissue. In this review, we will present various synthesis/fabrication techniques for silicone-based bioscaffolds and will discuss their assets and potential drawbacks. Furthermore, since cell attachment onto the surface of silicones can be limited due to their intrinsic high hydrophobicity, we will also discuss different techniques of surface modification. Finally, we will examine the physical (i.e. density, porosity, pore interconnectivity, wettability, elasticity, roughness); mechanical (tension, compression, hardness); and chemical (elemental composition-properties) properties of silicone bioscaffolds and how these can be modulated to suit the needs for specific applications.


Assuntos
Dimetilpolisiloxanos , Silicones , Terapia Baseada em Transplante de Células e Tecidos , Humanos , Polímeros , Porosidade , Próteses e Implantes , Propriedades de Superfície
13.
Adv Funct Mater ; 30(15)2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33071709

RESUMO

The aim of this work was to develop, characterize and test a novel 3D bioscaffold matrix which can accommodate pancreatic islets and provide them with a continuous, controlled and steady source of oxygen to prevent hypoxia-induced damage following transplantation. Hence, we made a collagen based cryogel bioscaffold which incorporated calcium peroxide (CPO) into its matrix. The optimal concentration of CPO integrated into bioscaffolds was 0.25wt.% and this generated oxygen at 0.21±0.02mM/day (day 1), 0.19±0.01mM/day (day 6), 0.13±0.03mM/day (day 14), and 0.14±0.02mM/day (day 21). Accordingly, islets seeded into cryogel-CPO bioscaffolds had a significantly higher viability and function compared to islets seeded into cryogel alone bioscaffolds or islets cultured alone on traditional cell culture plates; these findings were supported by data from quantitative computational modelling. When syngeneic islets were transplanted into the epididymal fat pad (EFP) of diabetic mice, our cryogel-0.25wt.%CPO bioscaffold improved islet function with diabetic animals re-establishing glycemic control. Mice transplanted with cryogel-0.25wt.%CPO bioscaffolds showed faster responses to intraperitoneal glucose injections and had a higher level of insulin content in their EFP compared to those transplanted with islets alone (P<0.05). Biodegradability studies predicted that our cryogel-CPO bioscaffolds will have long-lasting biostability for approximately 5 years (biodegradation rate: 16.00±0.65%/year). Long term implantation studies (i.e. 6 months) showed that our cryogel-CPO bioscaffold is biocompatible and integrated into the surrounding fat tissue with minimal adverse tissue reaction; this was further supported by no change in blood parameters (i.e. electrolyte, metabolic, chemistry and liver panels). Our novel oxygen-generating bioscaffold (i.e. cryogel-0.25wt.%CPO) therefore provides a biostable and biocompatible 3D microenvironment for islets which can facilitate islet survival and function at extra-hepatic sites of transplantation.

14.
J Clin Med ; 9(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096742

RESUMO

The aggressive outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) as COVID-19 (coronavirus disease-2019) pandemic demands rapid and simplified testing tools for its effective management. Increased mass testing and surveillance are crucial for controlling the disease spread, obtaining better pandemic statistics, and developing realistic epidemiological models. Despite the advantages of nucleic acid- and antigen-based tests such as accuracy, specificity, and non-invasive approaches of sample collection, they can only detect active infections. Antibodies (immunoglobulins) are produced by the host immune system within a few days after infection and persist in the blood for at least several weeks after infection resolution. Antibody-based tests have provided a substitute and effective method of ultra-rapid detection for multiple contagious disease outbreaks in the past, including viral diseases such as SARS (severe acute respiratory syndrome) and MERS (Middle East respiratory syndrome). Thus, although not highly suitable for early diagnosis, antibody-based methods can be utilized to detect past infections hidden in the population, including asymptomatic ones. In an active community spread scenario of a disease that can provide a bigger window for mass detections and a practical approach for continuous surveillance. These factors encouraged researchers to investigate means of improving antibody-based rapid tests and employ them as reliable, reproducible, sensitive, specific, and economic tools for COVID-19 mass testing and surveillance. The development and integration of such immunoglobulin-based tests can transform the pandemic diagnosis by moving the same out of the clinics and laboratories into community testing sites and homes. This review discusses the principle, technology, and strategies being used in antibody-based testing at present. It also underlines the immense prospect of immunoglobulin-based testing and the efficacy of repeated planned deployment in pandemic management and post-pandemic sustainable screenings globally.

15.
Nano Lett ; 20(10): 7220-7229, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32909757

RESUMO

In the present study, we created a nanoscale platform that can deliver nutrients to pancreatic islets in a controlled manner. Our platform consists of a mesoporous silica nanoparticle (MSNP), which can be loaded with glutamine (G: an essential amino acid required for islet survival and function). To control the release of G, MSNPs were coated with a polydopamine (PD) layer. With the optimal parameters (0.5 mg/mL and 0.5 h), MSNPs were coated with a layer of PD, which resulted in a delay of G release from MSNPs over 14 d (57.4 ± 4.7% release). Following syngeneic renal subcapsule islet transplantation in diabetic mice, PDG-MSNPs improved the engraftment of islets (i.e., enhanced revascularization and reduced inflammation) as well as their function, resulting in re-establishment of glycemic control. Collectively, our data show that PDG-MSNPs can support transplanted islets by providing them with a controlled and sustained supply of nutrients.


Assuntos
Diabetes Mellitus Experimental , Ilhotas Pancreáticas , Nanopartículas , Animais , Diabetes Mellitus Experimental/terapia , Indóis , Camundongos , Nutrientes , Polímeros , Porosidade , Dióxido de Silício
16.
Nanomaterials (Basel) ; 10(4)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32325974

RESUMO

Type-1 diabetes is characterized by high blood glucose levels due to a failure of insulin secretion from beta cells within pancreatic islets. Current treatment strategies consist of multiple, daily injections of insulin or transplantation of either the whole pancreas or isolated pancreatic islets. While there are different forms of insulin with tunable pharmacokinetics (fast, intermediate, and long-acting), improper dosing continues to be a major limitation often leading to complications resulting from hyper- or hypo-glycemia. Glucose-responsive insulin delivery systems, consisting of a glucose sensor connected to an insulin infusion pump, have improved dosing but they still suffer from inaccurate feedback, biofouling and poor patient compliance. Islet transplantation is a promising strategy but requires multiple donors per patient and post-transplantation islet survival is impaired by inflammation and suboptimal revascularization. This review discusses how nano- and micro-technologies, as well as tissue engineering approaches, can overcome many of these challenges and help contribute to an artificial pancreas-like system.

17.
J Control Release ; 319: 201-212, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-31899267

RESUMO

Over the years, nanoparticles, microparticles, implants of poly(D,l-lactide-co-glycolide) (PLGA) have been demonstrated for diverse biomedical applications. Yet, initial burst release and optimal modulation of the release profiles limit their clinical use. Here, shape-defined PLGA microPlates (µPLs) were realized for the sustained release of two anti-inflammatory molecules, the natural polyphenol curcumin (CURC) and the corticosteroid dexamethasone (DEX). Under the electron microscope, µPLs appeared as square prisms with an edge length of 20 µm. The top-down fabrication process allowed the authors to vary, readily and systematically, the µPL height from 5 to 10 µm and the PLGA mass from 1 to 5, 10 and 20 mg. 'Taller' particles realized with higher PLGA concentrations encapsulated more drug reaching on average values of about 150 pg/µPL, for both CURC and DEX. The µPL height and PLGA concentration had major effects on drug release, too. Under sink conditions, DEX release from tall µPLs at 1 h reduced from 50% to 10% and 2% for the 5, 10 and 20 mg PLGA configurations, respectively. Also, DEX was released more slowly from taller as compared to short µPLs. The opposite trend was observed for CURC, possibly for its lower hydrophobicity and molecular weight as compared to DEX. This was also confirmed by quantifying the free energy of translocation for the two drugs via molecular dynamics simulations. Finally, the anti-inflammatory activity of µPLs was tested in vitro on LPS-stimulated rat monocytes and in vivo on a murine model of UVB-induced skin burns. Both in vitro and in vivo, the expression of pro-inflammatory cytokines (IL-6, IL-1ß, and TNF-α) was significantly reduced by the application of µPLs as compared to the free compounds. In vivo, one single topical deposition of CURC-µPLs outperformed multiple, free CURC applications. This work demonstrates that geometry and polymer density can be effectively used to modulate the pharmacological performance of microparticles and mitigate the initial burst release.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Animais , Anti-Inflamatórios , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Camundongos , Tamanho da Partícula , Ratos
18.
ACS Appl Bio Mater ; 3(10): 6626-6632, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-35019389

RESUMO

Type-1 diabetes (T1D) is caused by immune-mediated destruction of insulin-producing beta-cells, resulting in insulin deficiency and hyperglycemia. Islet transplantation is a potential treatment for T1D, but clinical implementation is hampered by islet availability and poor islet survival post-transplantation. To overcome these issues, we developed an intravascular multiside hole catheter with an interior polydimethylsiloxane (PDMS) bioscaffold capable of housing a cellular cargo. We used computational fluid dynamics to determine an optimized catheter design, which we then fabricated. Using our hybrid PDMS bioscaffold-intravascular catheter, we demonstrated that this platform can successfully maintain in vitro islet function and viability.

19.
ACS Biomater Sci Eng ; 5(9): 4834-4843, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33448826

RESUMO

Metastases are the primary cause of death in cancer patients. Small animal models are helping in dissecting some key features in the metastatic cascade. Yet, tools for systematically analyzing the contribution of blood flow, vascular permeability, inflammation, tissue architecture, and biochemical stimuli are missing. In this work, a microfluidic chip is designed and tested to replicate in vitro key steps in the metastatic cascade. It comprises two channels, resting on the same plane, connected via an array of rounded pillars to form a permeable micromembrane. One channel acts as a vascular compartment and is coated by a fully confluent monolayer of endothelial cells, whereas the other channel is filled with a mixture of matrigel and breast cancer cells (MDA-MB-231) and reproduces the malignant tissue. The vascular permeability can be finely modulated by inducing pro-inflammatory conditions in the tissue compartment, which transiently opens up the tight junctions of endothelial cells. Permeability ranges from 1 µm/s (tight endothelium) to 5 µm/s (TNF-α at 50 ng/mL overnight) and up to ∼10 µm/s (no endothelium). Fresh medium flowing continuously in the vascular compartment is sufficient to induce cancer cell intravasation at rates of 8 cells/day with an average velocity of ∼0.5 µm/min. On the other hand, the vascular adhesion and extravasation of circulating cancer cells require TNF-α stimulation. Extravasation occurs at lower rates with 4 cells/day and an average velocity of ∼0.1 µm/min. Finally, the same chip is completely filled with matrigel and the migration of cancer cells from one channel to the other is monitored over a region of about 400 µm. Invasion rates of 12 cells/day are documented upon TNF-α stimulation. This work demonstrates that the proposed compartmentalized microfluidic chip can efficiently replicate in vitro, under controlled biophysical and biochemical conditions, the multiple key steps in the cancer metastatic cascade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA