Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 109: 110800, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37442513

RESUMO

Expression of key transcriptional regulators is altered in chondrocytes in osteoarthritis (OA). This contributes to an increase in production of cartilage-catabolizing enzymes such as MMP13 and ADAMTS5. RCOR1 and RCOR2, binding partners for the transcriptional repressor REST, have previously been found to be downregulated in OA chondrocytes although their function in chondrocytes is unclear. HES1 is a known REST/RCOR1 target gene and HES1 has been shown to promote MMP13 and ADAMTS5 expression in murine OA chondrocytes. The purpose of this study was to determine whether reduced REST/RCOR levels leads to increased HES1 expression in human OA chondrocytes and whether HES1 also promotes ADAMTS5 and MMP13 expression in these cells. Chondrocytes were isolated from osteoarthritic and adjacent macroscopically normal cartilage obtained from patients undergoing total knee arthroplasty. RNA and protein levels of REST, RCOR1 and RCOR2 were lower, but levels of HES1 higher, in chondrocytes isolated from osteoarthritic compared to macroscopically normal cartilage. Over-expression of either REST, RCOR1 or RCOR2 resulted in reduced HES1 levels in OA chondrocytes whereas knockdown of REST, RCOR1 or RCOR2 led to increased HES1 expression in chondrocytes from macroscopically normal cartilage. In OA chondrocytes, ADAMTS5 and MMP13 expression were reduced following HES1 knockdown, but further enhanced following HES1 over-expression. Levels of phosphorylated CaMKII were higher in chondrocytes from OA cartilage consistent with previous findings that HES1 only promotes gene transcription in the presence of active CaMKII. These findings identify the REST/RCOR/HES1 pathway as a contributing factor leading to increased ADAMTS5 and MMP13 expression in OA chondrocytes.


Assuntos
Condrócitos , Osteoartrite , Humanos , Camundongos , Animais , Condrócitos/metabolismo , Metaloproteinase 13 da Matriz/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Osteoartrite/metabolismo , RNA/metabolismo , Células Cultivadas , Fatores de Transcrição HES-1/metabolismo , Proteína ADAMTS5/genética , Proteína ADAMTS5/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Correpressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...