Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687681

RESUMO

Altered autonomic input to the heart plays a major role in atrial fibrillation (AF). Autonomic neurons termed ganglionated plexi (GP) are clustered on the heart surface to provide the last point of neural control of cardiac function. To date the properties of GP neurons in humans are unknown. Here we have addressed this knowledge gap in human GP neuron structure and physiology in patients with and without AF. Human right atrial GP neurons embedded in epicardial adipose tissue were excised during open heart surgery performed on both non-AF and AF patients and then characterised physiologically by whole cell patch clamp techniques. Structural analysis was also performed after fixation at both the single cell and at the entire GP levels via three-dimensional confocal imaging. Human GP neurons were found to exhibit unique properties and structural complexity with branched neurite outgrowth. Significant differences in excitability were revealed between AF and non-AF GP neurons as measured by lower current to induce action potential firing, a reduced occurrence of low action potential firing rates, decreased accommodation and increased synaptic density. Visualisation of entire GPs showed almost all neurons are cholinergic with a small proportion of noradrenergic and dual phenotype neurons. Phenotypic distribution differences occurred with AF including decreased cholinergic and dual phenotype neurons, and increased noradrenergic neurons. These data show both functional and structural differences occur between GP neurons from patients with and without AF, highlighting that cellular plasticity occurs in neural input to the heart that could alter autonomic influence on atrial function. KEY POINTS: The autonomic nervous system plays a critical role in regulating heart rhythm and the initiation of AF; however, the structural and functional properties of human autonomic neurons in the autonomic ganglionated plexi (GP) remain unknown. Here we perform the first whole cell patch clamp electrophysiological and large tissue confocal imaging analysis of these neurons from patients with and without AF. Our data show human GP neurons are functionally and structurally complex. Measurements of action potential kinetics show higher excitability in GP neurons from AF patients as measured by lower current to induce action potential firing, reduced low firing action potential rates, and decreased action potential accommodation. Confocal imaging shows increased synaptic density and noradrenergic phenotypes in patients with AF. Both functional and structural differences occur in GP neurons from patients with AF that could alter autonomic influence on atrial rhythm.

2.
Yale J Biol Med ; 96(4): 455-465, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38161578

RESUMO

Objectives: The aim of this study was to investigate whether chia (Salvia hispanica) seeds, which are rich in omega-3 fatty acids, amino acids, and vitamins with antioxidant properties, can mitigate the negative effects on male reproductive function caused by cyclophosphamide, a frequently used chemotherapeutic agent. Methods: Male wistar rats are divided into seven groups (n=6). All groups except the normal control (NC) received cyclophosphamide (30mg/kg, i.p.) for the first 5 days. The standard group received clomiphene citrate (0.25 mg/kg, p.o.). Treatment groups T1%, T5%, T10%, and ω-3 received 1%, 5%, and 10% chia seeds in the diet, and 880 mg/kg omega-3 fatty acid (p.o) respectively for 15 days. The effect on the reproductive system was evaluated by analysis of epididymal sperm characteristics, biochemical parameters, and serum testosterone level. Results: Clomiphene citrate improved oligospermia via hormone mediated effect. Chia seeds and omega-3 fatty acid treatment also showed improvement in reproductive parameters including oxidative stress and histological features of the testes. Omega-3 fatty acid treatment was more effective for the prevention of cyclophosphamide toxicity on testes as compared to chia seeds. Nasal bleeding was noted in several animals subjected to chia seed treatment. This occurrence might be attributed to chia seeds' impact on coagulation and/or platelet function, potentially heightened due to chemotherapy associated bone marrow suppression. Conclusions: In our study, chia seeds as well as omega-3 fatty acid treatment were found to be protective against cyclophosphamide-induced reproductive toxicity in rats. However, the adverse effect of hemorrhage associated with drug interaction of chia seeds with cytotoxic chemotherapeutic drugs needs careful attention and further investigation.


Assuntos
Ácidos Graxos Ômega-3 , Oligospermia , Salvia , Humanos , Masculino , Ratos , Animais , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/análise , Ácidos Graxos Ômega-3/química , Ratos Wistar , Salvia/química , Salvia/metabolismo , Sementes/química , Sementes/metabolismo , Ciclofosfamida/efeitos adversos , Interações Medicamentosas , Clomifeno/análise
3.
Front Immunol ; 13: 1009252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211335

RESUMO

Background: Erythrocyte invasion by P. falciparum involves functionally overlapping interactions between the parasite's ligands and the erythrocyte surface receptors. While some P. falciparum isolates necessarily engage the sialic acid (SA) moieties of the erythrocytes during the invasion, others use ligands whose binding is independent of SA for successful invasion. Deciphering the major pathway used by P. falciparum clinical isolates represent a key step toward developing an efficient blood stage malaria vaccine. Methods: We collected a total of 156 malaria-infected samples from Ghanaian children aged 2 to 14 years and used a two-color flow cytometry-based invasion assay to assess the invasion phenotype diversity of Ghanaian P. falciparum clinical isolates. Anti-human CR1 antibodies were used to determine the relative contribution of the PfRh4-CR1 interaction in the parasites invasion phenotype and RT-qPCR was used to assess the expression levels of key invasion-related ligands. Results: Our findings show no clear association between demographic or clinical data and existing reports on the malaria transmission intensity. The complete invasion data obtained for 156 isolates, showed the predominance of SA-independent pathways in Ghanaian clinical isolates. Isolates from Hohoe and Navrongo had the highest diversity in invasion profile. Our data also confirmed that the PfRh4-CR1 mediated alternative pathway is important in Ghanaian clinical isolates. Furthermore, the transcript levels of ten invasion-related genes obtained in the study showed little variations in gene expression profiles within and between parasite populations across sites. Conclusion: Our data suggest a low level of phenotypic diversity in Ghanaian clinical isolates across areas of varying endemicity and further highlight its importance in the quest for new intervention strategies, such as the investigation of blood-stage vaccine targets, particularly those targeting specific pathways and able to trigger the stimulation of broadly neutralizing invasion antibodies.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Parasitos , Animais , Gana/epidemiologia , Ligantes , Ácido N-Acetilneuramínico/metabolismo , Fenótipo , Plasmodium falciparum , Proteínas de Protozoários
4.
J Dent Res ; 101(4): 473-482, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34796774

RESUMO

The mammalian dentition is a serially homogeneous structure that exhibits wide numerical and morphological variation among multiple different species. Patterning of the dentition is achieved through complex reiterative molecular signaling interactions that occur throughout the process of odontogenesis. The secreted signaling molecule Sonic hedgehog (Shh) plays a key role in this process, and the Shh coreceptor growth arrest-specific 1 (Gas1) is expressed in odontogenic mesenchyme and epithelium during multiple stages of tooth development. We show that mice engineered with Gas1 loss-of-function mutation have variation in number, morphology, and size of teeth within their molar dentition. Specifically, supernumerary teeth with variable morphology are present mesial to the first molar with high penetrance, while molar teeth are characterized by the presence of both additional and absent cusps, combined with reduced dimensions and exacerbated by the presence of a supernumerary tooth. We demonstrate that the supernumerary tooth in Gas1 mutant mice arises through proliferation and survival of vestigial tooth germs and that Gas1 function in cranial neural crest cells is essential for the regulation of tooth number, acting to restrict Wnt and downstream FGF signaling in odontogenic epithelium through facilitation of Shh signal transduction. Moreover, regulation of tooth number is independent of the additional Hedgehog coreceptors Cdon and Boc, which are also expressed in multiple regions of the developing tooth germ. Interestingly, further reduction of Hedgehog pathway activity in Shhtm6Amc hypomorphic mice leads to fusion of the molar field and reduced prevalence of supernumerary teeth in a Gas1 mutant background. Finally, we demonstrate defective coronal morphology and reduced coronal dimensions in the molar dentition of human subjects identified with pathogenic mutations in GAS1 and SHH/GAS1, suggesting that regulation of Hedgehog signaling through GAS1 is also essential for normal patterning of the human dentition.


Assuntos
Proteínas Hedgehog , Dente Supranumerário , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dentição , Proteínas Ligadas por GPI , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Camundongos , Odontogênese , Transdução de Sinais/fisiologia , Dente Supranumerário/genética
5.
Sci Rep ; 11(1): 7129, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33782439

RESUMO

Human erythrocytes are indispensable for Plasmodium falciparum development. Unlike other eukaryotic cells, there is no existing erythroid cell line capable of supporting long-term P. falciparum in vitro experiments. Consequently, invasion phenotyping experiments rely on erythrocytes of different individuals. However, the contribution of the erythrocytes variation in influencing invasion rates remains unknown, which represents a challenge for conducting large-scale comparative studies. Here, we used erythrocytes of different blood groups harboring different hemoglobin genotypes to assess the relative contribution of blood donor variability in P. falciparum invasion phenotyping assays. For each donor, we investigated the relationship between parasite invasion phenotypes and erythrocyte phenotypic characteristics, including the expression levels of surface receptors (e.g. the human glycophorins A and C, the complement receptor 1 and decay accelerating factor), blood groups (e.g. ABO/Rh system), and hemoglobin genotypes (e.g. AA, AS and AC). Across all donors, there were significant differences in invasion efficiency following treatment with either neuraminidase, trypsin or chymotrypsin relative to the control erythrocytes. Primarily, we showed that the levels of key erythrocyte surface receptors and their sensitivity to enzyme treatment significantly differed across donors. However, invasion efficiency did not correlate with susceptibility to enzyme treatment or with the levels of the selected erythrocyte surface receptors. Furthermore, we found no relationship between P. falciparum invasion phenotype and blood group or hemoglobin genotype. Altogether, our findings demonstrate the need to consider erythrocyte donor uniformity and anticipate challenges associated with blood donor variability in early stages of large-scale study design.


Assuntos
Doadores de Sangue , Plasmodium falciparum/patogenicidade , Humanos , Fenótipo
6.
Trends Parasitol ; 37(3): 195-204, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33127332

RESUMO

The last malaria parasite standing will display effective adaptations to selective forces. While substantial progress has been made in reducing malaria mortality, eradication will require elimination of all Plasmodium parasites, including those in asymptomatic infections. These typically chronic, low-density infections are difficult to detect, yet can persist for months. We argue that asymptomatic infection is the parasite's best asset for survival but it can be exploited if studied as a new model for host-pathogen-vector interactions. Regular sampling from cohorts of asymptomatic individuals can provide a means to investigate continuous parasite development within its natural host. State-of-the-art techniques can now be applied to such infections. This approach may reveal key molecular drivers of chronic infections - a critical step for malaria eradication.


Assuntos
Infecções Assintomáticas , Interações Hospedeiro-Parasita , Malária/parasitologia , Plasmodium/fisiologia , Animais , Doença Crônica/prevenção & controle , Erradicação de Doenças , Humanos , Malária/prevenção & controle
7.
Exp Biol Med (Maywood) ; 246(1): 10-19, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019810

RESUMO

IMPACT STATEMENT: Plasmodium falciparum malaria is a global health problem. Erythrocyte invasion by P. falciparum merozoites appears to be a promising target to curb malaria. We have identified and characterized a novel protein that is involved in erythrocyte invasion. Our data on protein subcellular localization, stage-specific protein expression pattern, and merozoite invasion inhibition by α-peptide antibodies suggest a role for PF3D7_1459400 protein during P. falciparum erythrocyte invasion. Even more, the human immunoepidemiology data present PF3D7_1459400 protein as an immunogenic antigen which could be further exploited for the development of new anti-infective therapy against malaria.


Assuntos
Eritrócitos/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Adulto , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/imunologia , Sequência Conservada , Humanos , Estágios do Ciclo de Vida , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Proteínas de Protozoários/química , Ratos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Frações Subcelulares/metabolismo
8.
Malar J ; 19(1): 200, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32503587

RESUMO

BACKGROUND: Red blood cell (RBC) polymorphisms are suggested to influence the course of Plasmodium falciparum malaria. Whereas some variants have been found to be protective, others have been found to enhance parasite development. This study evaluated the effect of variant haemoglobin (Hb) and ABO blood groups on P. falciparum merozoite invasion, multiplication rates as well as gametocyte development. METHODS: Approximately 2.5 mL of venous blood was collected from each participant. Flow cytometry was used to determine the in vitro merozoite invasion rates of NF54 parasites into the blood of 66 non-parasitaemic individuals with variant Hb genotypes (HbSS, HbSC) and blood groups (A, B, O), which were then compared with invasion into HbAA blood. The ex vivo asexual parasite multiplication and gametocyte production rates of parasites from 79 uncomplicated malaria patients with varying Hb genotypes (HbAS, HbAC and HbAA) were also estimated using microscopy. RESULTS: Merozoite invasion rates were significantly reduced by about 50% in RBCs containing HbSS and HbSC relative to HbAA cells. The presence of blood group O and B reduced the invasion rates of HbSS by about 50% and 60%, respectively, relative to HbSC but the presence of blood group A removed the inhibitory effect of HbSS. The initial parasite densities in uncomplicated malaria patients with Hb genotypes HbAS and HbAC cells were similar but significantly lower than those with genotype HbAA. The ex vivo parasite multiplication rate, gametocytaemia and gametocyte conversion rates followed a similar trend but did not reach statistical significance (p > 0.05). CONCLUSIONS: Parasite invasion rate into erythrocytes is dependent on both erythrocyte blood group antigen and haemoglobin genotype as blood group O and B provided protection via reduced merozoite invasion in RBCs containing HbSS relative to HbSC. Regardless of haemoglobin type, greater than 70% malaria patients had circulating ring stage parasites that differentiated into stage II gametocytes in 4 days.


Assuntos
Eritrócitos/parasitologia , Malária Falciparum/sangue , Plasmodium falciparum/crescimento & desenvolvimento , Adolescente , Adulto , Antígenos de Grupos Sanguíneos/classificação , Criança , Estudos Transversais , Feminino , Gana , Hemoglobinas/classificação , Humanos , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Front Immunol ; 11: 505, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318061

RESUMO

Understanding the functional role of proteins expressed by Plasmodium falciparum is an important step toward unlocking potential targets for the development of therapeutic or diagnostic interventions. The armadillo (ARM) repeat protein superfamily is associated with varied functions across the eukaryotes. Therefore, it is important to understand the role of members of this protein family in Plasmodium biology. The Plasmodium falciparum armadillo repeats only (PfARO; Pf3D7_0414900) and P. falciparum merozoite organizing proteins (PfMOP; Pf3D7_0917000) are armadillo-repeat containing proteins previously characterized in P. falciparum. Here, we describe the characterization of another ARM repeat-containing protein in P. falciparum, which we have named the P. falciparum Merozoites-Associated Armadillo repeats protein (PfMAAP). Antibodies raised to three different synthetic peptides of PfMAAP show apical staining of free merozoites and those within the mature infected schizont. We also demonstrate that the antibodies raised to the PfMAAP peptides inhibited invasion of erythrocytes by merozoites from different parasite isolates. In addition, naturally acquired human antibodies to the N- and C- termini of PfMAAP are associated with a reduced risk of malaria in a prospective cohort analysis.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Eritrócitos/imunologia , Malária Falciparum/metabolismo , Peptídeos/metabolismo , Plasmodium falciparum/imunologia , Proteínas de Protozoários/metabolismo , Animais , Anticorpos Antiprotozoários/sangue , Proteínas do Domínio Armadillo/genética , Estudos de Coortes , Eritrócitos/parasitologia , Humanos , Imunidade Humoral , Malária Falciparum/transmissão , Merozoítos , Peptídeos/genética , Estudos Prospectivos , Transporte Proteico , Proteínas de Protozoários/genética , Esquizontes
10.
Artigo em Inglês | MEDLINE | ID: mdl-32266165

RESUMO

Nearly half of the genes in the Plasmodium falciparum genome have not yet been functionally investigated. We used homology-based structural modeling to identify multiple copies of Armadillo repeats within one uncharacterized gene expressed during the intraerythrocytic stages, PF3D7_0410600, subsequently referred to as P. falciparum Armadillo-Type Repeat Protein (PfATRP). Soluble recombinant PfATRP was expressed in a bacterial expression system, purified to apparent homogeneity and the identity of the recombinant PfATRP was confirmed by mass spectrometry. Affinity-purified α-PfATRP rabbit antibodies specifically recognized the recombinant protein. Immunofluorescence assays revealed that α-PfATRP rabbit antibodies reacted with P. falciparum schizonts. Anti-PfATRP antibody exhibited peripheral staining patterns around the merozoites. Given the localization of PfATRP in merozoites, we tested for an egress phenotype during schizont arrest assays and demonstrated that native PfATRP is inaccessible on the surface of merozoites in intact schizonts. Dual immunofluorescence assays with markers for the inner membrane complex (IMC) and microtubules suggest partial colocalization in both asexual and sexual stage parasites. Using the soluble recombinant PfATRP in a screen of plasma samples revealed that malaria-infected children have naturally acquired PfATRP-specific antibodies.


Assuntos
Proteínas do Domínio Armadillo , Malária Falciparum , Plasmodium falciparum , Proteínas de Protozoários , Anticorpos Antiprotozoários , Antígenos de Protozoários , Eritrócitos , Merozoítos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas do Domínio Armadillo/genética , Humanos
11.
Sci Rep ; 10(1): 1498, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001728

RESUMO

Despite significant progress in controlling malaria, the disease remains a global health burden. The intricate interactions the parasite Plasmodium falciparum has with its host allows it to grow and multiply in human erythrocytes. The mechanism by which P. falciparum merozoites invade human erythrocytes is complex, involving merozoite proteins as well as erythrocyte surface proteins. Members of the P. falciparum reticulocyte binding-like protein homolog (PfRh) family of proteins play a pivotal role in merozoite invasion and hence are important targets of immune responses. Domains within the PfRh2b protein have been implicated in its ability to stimulate natural protective antibodies in patients. More specifically, a 0.58 kbp deletion, at the C-terminus has been reported in high frequencies in Senegalese and Southeast Asian parasite populations, suggesting a possible role in immune evasion. We analysed 1218 P. falciparum clinical isolates, and the results show that this deletion is present in Ghanaian parasite populations (48.5% of all isolates), with Kintampo (hyper-endemic, 53.2%), followed by Accra (Hypo-endemic, 50.3%), Cape Coast (meso-endemic, 47.9%) and Sogakope (meso-endemic, 43.15%). Further analysis of parasite genomes stored in the MalariaGEN database revealed that the deletion variant was common across transmission areas globally, with an overall frequency of about 27.1%. Interestingly, some parasite isolates possessed mixed PfRh2b deletion and full-length alleles. We further showed that levels of antibodies to the domain of PfRh2 protein were similar to antibody levels of PfRh5, indicating it is less recognized by the immune system.


Assuntos
Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/sangue , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Criança , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Eritrócitos/parasitologia , Feminino , Dosagem de Genes , Duplicação Gênica , Genes de Protozoários , Gana/epidemiologia , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Evasão da Resposta Imune/genética , Lactente , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Masculino , Merozoítos/genética , Merozoítos/imunologia , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Adulto Jovem
12.
Sci Rep ; 10(1): 245, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937828

RESUMO

The central role that erythrocyte invasion plays in Plasmodium falciparum survival and reproduction makes this process an attractive target for therapeutic or vaccine development. However, multiple invasion-related genes with complementary and overlapping functions afford the parasite the plasticity to vary ligands used for invasion, leading to phenotypic variation and immune evasion. Overcoming the challenge posed by redundant ligands requires a deeper understanding of conditions that select for variant phenotypes and the molecular mediators. While host factors including receptor heterogeneity and acquired immune responses may drive parasite phenotypic variation, we have previously shown that host-independent changes in invasion phenotype can be achieved by continuous culturing of the W2mef and Dd2 P. falciparum strains in moving suspension as opposed to static conditions. Here, we have used a highly biologically replicated whole transcriptome sequencing approach to identify the molecular signatures of variation associated with the phenotype switch. The data show increased expression of particular invasion-related genes in switched parasites, as well as a large number of genes encoding proteins that are either exported or form part of the export machinery. The genes with most markedly increased expression included members of the erythrocyte binding antigens (EBA), reticulocyte binding homologues (RH), surface associated interspersed proteins (SURFIN), exported protein family 1 (EPF1) and Plasmodium Helical Interspersed Sub-Telomeric (PHIST) gene families. The data indicate changes in expression of a repertoire of genes not previously associated with erythrocyte invasion phenotypes, suggesting the possibility that moving suspension culture may also select for other traits.


Assuntos
Eritrócitos/parasitologia , Perfilação da Expressão Gênica , Fenótipo , Plasmodium falciparum/fisiologia , Epigênese Genética , Humanos
13.
Parasite Epidemiol Control ; 5: e00101, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30906890

RESUMO

Recent elucidation of the genetic basis of the Vel blood group system has offered the field of blood transfusion medicine an additional consideration in determining the causes of hemolytic reactions after a patient is transfused. The identification of the SMIM1 gene to be responsible for the Vel blood group allows molecular based tools to be developed to further dissect the function of this antigen. Genetic signatures such as the homozygous 17 bp deletion and the heterozygous 17 bp deletion in combination with other single nucleotide polymorphisms (SNPs) and insertion sequences regulate the expression level of the gene. With this knowledge, it is now possible to study this antigen in-depth.

14.
J Infect Dis ; 218(5): 778-790, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29912472

RESUMO

Plasmodium falciparum erythrocyte invasion is a multistep process that involves a spectrum of interactions that are not well characterized. We have characterized a 113-kDa immunogenic protein, PF3D7_1431400 (PF14_0293), that possesses coiled-coil structures. The protein is localized on the surfaces of both merozoites and gametocytes, hence the name Plasmodium falciparum surface-related antigen (PfSRA). The processed 32-kDa fragment of PfSRA binds normal human erythrocytes with different sensitivities to enzyme treatments. Temporal imaging from initial attachment to internalization of viable merozoites revealed that a fragment of PfSRA, along with PfMSP119, is internalized after invasion. Moreover, parasite growth inhibition assays showed that PfSRA P1 antibodies potently inhibited erythrocyte invasion of both sialic acid-dependent and -independent parasite strains. Also, immunoepidemiological studies show that malaria-infected populations have naturally acquired antibodies against PfSRA. Overall, the results demonstrate that PfSRA has the structural and functional characteristics of a very promising target for vaccine development.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Criança , Pré-Escolar , Descoberta de Drogas/métodos , Endocitose , Humanos , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Proteínas de Membrana/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo
15.
Sci Rep ; 8(1): 5782, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636510

RESUMO

The extensive redundancy in the use of invasion ligands by Plasmodium falciparum, and its unique ability to switch between invasion pathways have hampered vaccine development. P. falciparum strains Dd2 and W2mef have been shown to change from sialic acid (SA)-dependent to SA-independent phenotypes when selected on neuraminidase-treated erythrocytes. Following an observation of increasing ability of Dd2 to invade neuraminidase-treated cells when cultured for several weeks, we systematically investigated this phenomenon by comparing invasion phenotypes of Dd2, W2mef and 3D7 strains of P. falciparum that were cultured with gentle shaking (Suspended) or under static (Static) conditions. While Static Dd2 and W2mef remained SA-dependent for the entire duration of the investigation, Suspended parasites spontaneously and progressively switched to SA-independent phenotype from week 2 onwards. Furthermore, returning Suspended cultures to Static conditions led to a gradual reversal to SA-dependent phenotype. The switch to SA-independent phenotype was accompanied by upregulation of the key invasion ligand, reticulocyte-binding homologue 4 (RH4), and the increased invasion was inhibited by antibodies to the RH4 receptor, CR1. Our data demonstrates a novel mechanism for inducing the switching of invasion pathways in P. falciparum parasites and may provide clues for understanding the mechanisms involved.


Assuntos
Malária Falciparum/microbiologia , Proteínas de Membrana/genética , Ácido N-Acetilneuramínico/metabolismo , Fenótipo , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Eritrócitos/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Neuraminidase/farmacologia , Plasmodium falciparum/metabolismo
16.
Rev Sci Instrum ; 88(10): 105111, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29092461

RESUMO

A combined experimental and modeling effort is undertaken to assess a detection system composed of an orthogonal extraction time-of-flight (TOF) mass spectrometer coupled to a continuous ion source emitting an ion beam with kinetic energy of several hundred eV. The continuous ion source comprises an electrospray capillary system employing an undiluted ionic liquid emitting directly into vacuum. The resulting ion beam consists of ions with kinetic energy distributions of width greater than a hundred of eV and mass-to-charge (m/q) ratios ranging from 111 to 500 000 amu/q. In particular, the investigation aims to demonstrate the kinetic energy resolution along the ion beam axis (axial) of orthogonally extracted ions in measurements of the axial kinetic energy-specific mass spectrum, mass flow rate, and total ion current. The described instrument is capable of simultaneous measurement of a broad m/q range in a single acquisition cycle with approximately 25 eV/q axial kinetic energy resolution. Mass resolutions of ∼340 (M/ΔM, FWHM) were obtained for ions at m/q = 1974. Comparison of the orthogonally extracted TOF mass spectrum to mass flow and ion current measurements obtained with a quartz-crystal microbalance and Faraday cup, respectively, shows reasonable numeric agreement and qualitative agreement in the trend as a function of energy defect.

17.
Int J Parasitol Drugs Drug Resist ; 7(3): 399-406, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29128848

RESUMO

Malaria remains a major cause of childhood deaths in resource-limited settings. In the absence of an effective vaccine, drugs and other interventions have played very significant roles in combating the scourge of malaria. The recent reports of resistance to artemisinin necessitate the need for new antimalarial drugs with novel mechanisms of action. Towards the development of new, affordable and easily accessible antimalarial drugs for endemic regions, the Medicines for Malaria Venture (MMV) assembled a total of 400 active antimalarial compounds called the Malaria Box. The potency and the efficacy of the Malaria Box Compounds have been determined mainly using laboratory strains of P. falciparum. This study investigated the potency of twenty compounds from the Malaria Box against four clinical isolates from Ghana, using optimized in vitro growth inhibitory assays. Seven out of the 20 compounds screened had 50% inhibitory concentration (IC50) below 500 nM. The most active among the selected compounds was MMV006087 (average IC50 of 30.79 nM). Variations in the potency of the Malaria Box Compounds were observed between P. falciparum clinical isolates and Dd2 strain. We also investigated the sensitivity of the clinical isolates to chloroquine and artesunate. The N093 clinical isolate was found to be resistant to chloroquine but showed high sensitivity to artesunate. The results underscore the importance of including clinical isolates with different drug-resistant backgrounds, in addition to laboratory strains, in validating potential compounds during antimalarial compound screening programs.


Assuntos
Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Artemisininas/farmacologia , Artesunato , Cloroquina/farmacologia , Resistência a Medicamentos , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Gana/epidemiologia , Humanos , Concentração Inibidora 50 , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Testes de Sensibilidade Parasitária
18.
Bull Group Int Rech Sci Stomatol Odontol ; 52(1): e23-8, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25461445

RESUMO

We have previously shown that PKD1, the gene encoding Polycystin-1 (or TRPP1) is expressed in human odontoblasts and that this protein is localized at the primary cilium of the cell. Nevertheless, its function remain unclear in this cell even if studies on osteoblasts, osteocytes and chondrocytes give TRPP1 as a promising candidate for mechanotransduction in response to mechanical stress. Consequently, to evaluate the role of TRPP1 in this transduction process, we needed first to generate an in vitro murine model down expressing Pkd1. Using lentivirus-mediated shRNA technology, we obtained a 60% suppression of Pkd1 mRNA expression in transfected MO6-G3 cells associated with a decrease of cell proliferation. Thus, establishment of this murine odontoblast model underexpressing Pkd1 associated with applied mechanical forces (compression or shear stress) will allow us to go further in the determination of TRPP1 involvement in odontoblasts mechanotransduction.


Assuntos
Regulação da Expressão Gênica/genética , Inativação Gênica/fisiologia , Odontoblastos/metabolismo , RNA Interferente Pequeno/genética , Canais de Cátion TRPP/genética , Animais , Técnicas de Cultura de Células , Proliferação de Células , Células Cultivadas , Cílios/metabolismo , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Lentivirus/genética , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Camundongos , Modelos Animais , Transfecção
19.
J Dent Res ; 88(10): 910-5, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19783798

RESUMO

A primary cilium, a sensory organelle present in almost every vertebrate cell, is regularly described in odontoblasts, projecting from the surfaces of the cells. Based on the hypothesis that the primary cilium is crucial both for dentin formation and possibly in tooth pain transmission, we have investigated the expression and localization of the main cilium components and involvement of the OFD1 gene in tooth morphogenesis. Odontoblasts in vitro express tubulin, inversin, rootletin, OFD1, BBS4, BBS6, ALMS1, KIF3A, PC1, and PC2. In vivo, cilia are aligned parallel to the dentin walls, with the top part oriented toward the pulp core. Close relationships between cilium and nerve fibers are evidenced. Calcium channels are concentrated in the vicinity of the basal body. Analysis of these data suggests a putative role of cilia in sensing the microenvironment, probably related to dentin secretion. This hypothesis is enhanced by the huge defects observed on molars from Ofd1 knockout mice, showing undifferentiated dentin-forming cells.


Assuntos
Cílios/fisiologia , Proteínas de Choque Térmico/fisiologia , Dente Molar/crescimento & desenvolvimento , Odontoblastos/fisiologia , Odontogênese/fisiologia , Adolescente , Animais , Canais de Cálcio/análise , Canais de Cálcio/ultraestrutura , Proteínas de Ciclo Celular , Movimento Celular , Células Cultivadas , Proteínas do Citoesqueleto/análise , Polpa Dentária/ultraestrutura , Dentina/ultraestrutura , Chaperoninas do Grupo II , Proteínas de Choque Térmico/análise , Humanos , Cinesinas/análise , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos , Dente Molar/ultraestrutura , Chaperonas Moleculares/análise , Morfogênese/fisiologia , Fibras Nervosas/ultraestrutura , Proteínas/análise , Canais de Cátion TRPP/análise , Fatores de Transcrição/análise , Tubulina (Proteína)/análise
20.
Anal Chem ; 73(5): 1007-15, 2001 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11289410

RESUMO

Optical fiber sensors using fluorescent probes distributed along the fiber cladding are of great interest for monitoring physical and chemical properties in their environment. The location of an emitting fluorophore along a fiber can be determined by measuring the time delay between a short, exciting laser pulse propagating in the fiber core and the returning fluorescence pulse. However, fluorescence lifetimes limit the spatial resolution, since a minimum separation of the fluorophores is required to resolve returning light pulses. For many applications, a closer spacing of sensor regions is desirable. We present a new method for the readout of closely packed fluorescent chemosensors located in the cladding of an optical fiber. By using a second fiber as an optical delay line, the minimum spacing between adjacent sensor regions can be well below the fluorescence lifetime limit. Since the coupling between the two fibers is evanescent, the attenuation of the excitation pulse is low, making long arrays of sensor regions feasible. This is particularly important since the one-dimensional combinatorial chemistry method developed by us allows for efficient preparation of diverse linear arrays. Detection sensitivities of 10(-7) mol/L are demonstrated, with the potential for significant improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA