Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 24(12): 1763-9, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20499321

RESUMO

Data are presented for real-time atmospheric monitoring of volatile organic chemicals (VOCs) in air using selected ion flow tube mass spectrometry (SIFT-MS) technology. These measurements were made by one of the new generation of SIFT-MS instruments. Results are shown for five VOCs that were continually monitored from a stationary sampling point over a 4-day period: ethene, ethanol, 1,3-butadiene, benzene and toluene. All analytes except ethene in the study have at least two simultaneous and independent measures of concentration. These results demonstrate the great advances in SIFT-MS that have been made in recent years. 1,3-Butadiene is measured at a concentration of 9 pptv with a precision of 44%. For a 1-s integration time, a detection limit of 50 pptv is achieved. Instrument sensitivities are reported for all five analytes.

2.
Anal Chem ; 79(6): 2537-40, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17302391

RESUMO

The rate coefficients of the ion-molecule reactions between H3O+, NO+, O2+, and phosphine were determined using a selected ion flow tube. Using these data, the selected ion flow tube mass spectrometry (SIFT-MS) method was applied to the real-time measurement of phosphine in nitrogen without sample preparation down to concentrations in the mid parts per trillion range. This is the first reported measurement using SIFT-MS in the parts per trillion range. Linear dependencies on concentration were found from 190 ppt to the ppm range, and the limit of detection for a 10-s scan was 190 ppt (0.27 pg/mL).

3.
Anal Chem ; 78(2): 575-9, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16408942

RESUMO

A fast, efficient, real-time method for the quantitative analysis of the peroxide explosive, TATP, is described. The method utilizes rapid ion-molecule reactions of chemical reagent ions with the vapor above solid TATP. The reactions of three reagent ions (H3O+, O2+, NO+) were examined. Although all three ions exhibited a near-collision-rate reaction with TATP, only NO+ showed product ions that provide unequivocal evidence for a TATP-based explosive. The limit of detection of TATP in the gas phase is 10 ppb (4 x 10(-10) mol L(-1)).

4.
J Am Chem Soc ; 125(43): 13063-74, 2003 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-14570479

RESUMO

We report and compare highly resolved, simultaneously recorded absorption and CD spectra of active Photosystem II (PSII) samples in the range 440-750 nm. From an appropriately scaled comparison of spinach membrane fragment (BBY) and PSII core spectra, we show that key features of the core spectrum are quantitatively represented in the BBY data. PSII from the cyanobacterium Synechocystis 6803 display spectral features in the Qy region of comparable width (50-70 cm(-1) fwhm) to those seen in plant PSII but the energies of the resolved features are distinctly different. A comparison of spectra taken of PSII poised in the S1QA and S2QA(-) redox states reveals electrochromic shifts largely attributable to the influence of QA(-) on Pheo(D1). This allows accurate determinations of the Pheo(D1) Qy absorption positions to be at 685.0 nm for spinach cores, 685.8 nm for BBY particles, and 683.0 nm for Synechocystis. These are discussed in terms of earlier reports of the Pheo(D1) energies in PSII. The Qx transition of Pheo(D1) undergoes a blue shift upon Q(A) reduction, and we place a lower limit of 80 cm(-1) on this shift in plant material. By comparing the magnitude of the Stark shifts of the Qx and Qy bands of Pheo(D1), the directions of the transition-induced dipole moment changes, Deltamu(x) and Deltamu(y), for this functionally important pigment could be determined, assuming normal magnitudes of the Deltamu's. Consequently, Deltamu(x) and Deltamu(y) are determined to be approximately orthogonal to the directions expected for these transitions. Low-fluence illumination experiments at 1.7 K resulted in very efficient formation of QA(-). This was accompanied by cyt b(559) oxidation in BBYs and carotenoid oxidation in cores. No chlorophyll oxidation was observed. Our data allow us to estimate the quantum efficiency of PSII at this temperature to be of the order 0.1-1. No Stark shift associated with the S1-to-S2 transition of the Mn cluster is evident in our samples. The similarity of Stark data in plants and Synechocystis points to minimal interactions of Pheo(D1) with nearby chloropyll pigments in active PSII preparations. This appears to be at variance with interpretations of experiments performed with inactive solubilized reaction-center preparations.


Assuntos
Cianobactérias/química , Complexo de Proteína do Fotossistema II/química , Spinacia oleracea/química , Membrana Celular/química , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Teoria Quântica , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA