Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 192: 115143, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37295253

RESUMO

Oil dispersion by the application of chemical dispersants is an important tool in oil spill response, but it is difficult to quantify in the field in a timely fashion that is useful for coordinators and decision-makers. One option is the use of rugged portable field fluorometers that can deliver essentially instantaneous results if access is attainable. The United States Coast Guard has suggested, in their Special Monitoring of Applied Response Technologies (SMART) protocols, that successful oil dispersion can be identified by a five-fold increase in oil fluorescence. Here we test three commercial fluorometers with different excitation/emission windows (SeaOWL, Cyclops 7FO, and Cyclops 7F-G) that might prove useful for such applications. Results show that they have significantly different dynamic ranges for detecting oil and that using them (or similar instruments) in combination is probably the best option for successfully assessing the effectiveness of oil dispersion operations. Nevertheless, the rapid dilution of dispersed oil means that measurements must be made within an hour or two of dispersion, suggesting that one feasible scenario would be monitoring ship-applied dispersants by vessels following close behind the dispersant application vessel. Alternatively, autonomous submersibles might be pre-deployed to monitor aerial dispersant application, although the logistical challenges in a real spill would be substantial.


Assuntos
Militares , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Humanos , Minociclina , Poluentes Químicos da Água/análise , Petróleo/análise , Poluição por Petróleo/análise
2.
Mar Pollut Bull ; 185(Pt B): 114360, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36413931

RESUMO

Photooxidation can alter the environmental fate and effects of spilled oil. To better understand this process, oil slicks were generated on seawater mesocosms and exposed to sunlight for 8 days. The molecular composition of seawater under irradiated and non-irradiated oil slicks was characterized using ion mobility spectrometry-mass spectrometry and polyaromatic hydrocarbons analyses. Biomimetic extraction was performed to quantify neutral and ionized constituents. Results show that seawater underneath irradiated oil showed significantly higher amounts of hydrocarbons with oxygen- and sulfur-containing by-products peaking by day 4-6; however, concentrations of dissolved organic carbon were similar. Biomimetic extraction indicated toxic units in irradiated mesocosms increased, mainly due to ionized components, but remained <1, suggesting limited potential for ecotoxicity. Because the experimental design mimicked important aspects of natural conditions (freshly collected seawater, natural sunlight, and relevant oil thickness and concentrations), this study improves our understanding of the effects of photooxidation during a marine oil spill.


Assuntos
Poluição por Petróleo , Petróleo , Luz Solar , Água , Água do Mar
3.
Environ Sci Technol ; 56(12): 8124-8131, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35580303

RESUMO

The biodegradation of dispersed crude oil in the ocean is relatively rapid (a half-life of a few weeks). However, it is often much slower on shorelines, usually attributed to low moisture content, nutrient limitation, and higher oil concentrations in beaches than in dispersed plumes. Another factor may be the increased salinity of the upper intertidal and supratidal zones because these parts of the beach are potentially subject to prolonged evaporation and only intermittent inundation. We have investigated whether such an increase in salinity has inhibitory effects on oil biodegradation in seashores. Lightly weathered Hibernia crude oil was added to beach sand at 1 or 10 mL/kg, and fresh seawater, at salinities of 30, 90, and 160 g/L, was added to 20% saturation. The biodegradation of oil was slower at higher salinities, where the half-life increased from 40 days at 30 g/L salts to 58 and 76 days at 90 and 160 g/L salts, respectively, and adding fertilizers somewhat enhanced oil biodegradation. Increased oil concentration in the sand, from 1 to 10 mL/kg, slowed the half-life by about 10-fold. Consequently, occasional irrigation with fertilization could be a suitable bioremediation strategy for the upper parts of contaminated beaches. However, dispersing oil at sea is probably the most suitable option for the optimal removal of spilled crude oil from the marine environment.


Assuntos
Poluição por Petróleo , Petróleo , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Sais , Areia
4.
Environ Sci Technol ; 56(12): 7789-7799, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35605020

RESUMO

While chemical dispersants are a powerful tool for treating spilled oil, their effectiveness can be limited by oil weathering processes such as evaporation and emulsification. It has been suggested that oil photo-oxidation could exacerbate these challenges. To address the role of oil photo-oxidation in dispersant effectiveness, outdoor mesocosm experiments with crude oil on seawater were performed. Changes in bulk oil properties and molecular composition were quantified to characterize oil photo-oxidation over 11 days. To test relative dispersant effectiveness, oil residues were evaluated using the Baffled Flask Test. The results show that oil irradiation led to oxygen incorporation, formation of oxygenated hydrocarbons, and higher oil viscosities. Oil irradiation was associated with decreased dispersant efficacy, with effectiveness falling from 80 to <50% in the Baffled Flask Test after more than 3 days of irradiation. Increasing photo-oxidation-induced viscosity seems to drive the decreasing dispersant effectiveness. Comparing the Baffled Flask Test results with field data from the Deepwater Horizon oil spill showed that laboratory dispersant tests underestimate the dispersion of photo-oxidized oil in the field. Overall, the results suggest that prompt dispersant application (within 2-4 days), as recommended by current oil spill response guidelines, is necessary for effective dispersion of spilled oil.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Hidrocarbonetos , Tensoativos/química , Poluentes Químicos da Água/química
5.
Biochim Biophys Acta Bioenerg ; 1863(6): 148558, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413248

RESUMO

Quinones play important roles in biological electron transfer reactions in almost all organisms, with specific roles in many physiological processes and chemotherapy. Quinones participate in two-electron, two-proton reactions in aqueous solution at equilibrium near neutral pH, but protons often lag behind the electron transfers. The relevant reactions in proteins are often sequential one electron redox processes without involving protons. Here we report the aprotic electrochemistry of the two half-couples, Q/Q.- and Q.-/Q=, of 11 parent quinones and 118 substituted 1,4-benzoquinones, 91 1,4-naphthoquinones, and 107 9,10-anthraquinones. The measured redox potentials are fit quite well with the Hammett para sigma (σpara) parameter. Occasional exceptions can involve important groups, such as methoxy substituents in ubiquinone and hydroxy substituents in therapeutics. These can generally be explained by reasonable conjectures involving steric clashes and internal hydrogen bonds. We also provide data for 25 other quinones, 2 double quinones and 15 non-quinones, all measured under similar conditions.


Assuntos
Naftoquinonas , Quinonas , Eletroquímica , Transporte de Elétrons , Prótons , Quinonas/química
6.
Environ Sci Technol ; 55(20): 13792-13801, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34617733

RESUMO

The 2010 Deepwater Horizon (DWH) blowout released 3.19 million barrels (435 000 tons) of crude oil into the Gulf of Mexico. Driven by currents and wind, an estimated 22 000 tons of spilled oil were deposited onto the northeastern Gulf shorelines, adversely impacting the ecosystems and economies of the Gulf coast regions. In this work we present field work conducted at the Gulf beaches in three U.S. States during 2010-2011: Louisiana, Alabama, and Florida, to explore endogenous mechanisms that control persistence and biodegradation of the MC252-oil deposited within beach sediments as deep as 50 cm. The work involved over 1500 measurements incorporating oil chemistry, hydrocarbon-degrading microbial populations, nutrient and DO concentrations, and intrinsic beach properties. We found that intrinsic beach capillarity along with groundwater depth provides primary controls on aeration and infiltration of near-surface sediments, thereby modulating moisture and redox conditions within the oil-contaminated zone. In addition, atmosphere-ocean-groundwater interactions created hypersaline sediment environments near the beach surface at all the studied sites. The fact that the oil-contaminated sediments retained near or above 20% moisture content and were also eutrophic and aerobic suggests that the limiting factor for oil biodegradation is the hypersaline environment due to evaporation, a fact not reported in prior studies. These results highlight the importance of beach porewater hydrodynamics in generating unique hypersaline sediment environments that inhibited oil decomposition along the Gulf shorelines following DWH.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Golfo do México , Petróleo/análise , Poluição por Petróleo/análise , Água , Poluentes Químicos da Água/análise
7.
Mar Pollut Bull ; 173(Pt B): 113034, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34710673

RESUMO

Controversy remains on the use of Sub-Sea Dispersant Injection (SSDI) during the Deepwater Horizon (DWH) spill to minimize the exposure of responders on surface vessels to volatile organic compounds (VOC). Here, we use extensive evidence (>90,000 VOC measurements) collected near the oil well MC252 site during the DWH spill and demonstrate at a high level of statistical confidence that SSDI enhanced the safety and health conditions of the responders at the water surface through the reduction of airborne VOC concentrations in a dose-dependent manner. VOC levels on ships' decks were clearly diminished (p < 0.001) during subsea dispersant use, and incidents of peak concentrations (>50 ppm VOC) that could have been an immediate concern to worker health were reduced by a factor of ~6 to 19 when dispersants were delivered at the intended rate. SSDI thus played an important role in minimizing potential exposure to VOC, and should be embedded in guidelines and regulations for dispersant use.


Assuntos
Poluição por Petróleo , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Campos de Petróleo e Gás , Poluição por Petróleo/análise , Água , Poluentes Químicos da Água/análise
8.
J Hazard Mater ; 416: 125919, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492851

RESUMO

The salinity of the upper parts of seashores can become higher than seawater due to evaporation between tidal inundations. Such hypersaline ecosystems, where the salinity can reach up to eight-fold higher than that of seawater (30-35 g/L), can be contaminated by oil spills. Here we investigate whether such an increase has inhibitory effects on oil biodegradation. Seawater was evaporated to a concentrated brine and added to fresh seawater to generate high salinity microcosms. Artificially weathered Hibernia crude oil was added, and biodegradation was followed for 76 days. First-order rate constants (k) for the biodegradation of GC-detectable hydrocarbons showed that the hydrocarbonoclastic activity was substantially inhibited at high salt - k decreased by ~75% at 90 g/L salts and ~90% at 160 g/L salts. This inhibition was greatest for the alkanes, although it extended to all classes of compounds measured, with the smallest effect on four-ring aromatics (e.g., chrysenes). Genera of well-known aerobic hydrocarbonoclastic bacteria were only identified at 30 g/L salts in the presence of oil, and only a few halophilic Archaea showed a slight enrichment at higher salt concentrations. These results indicate that biodegradation of spilled oil will likely be slowed in supratidal ecosystems and suggest that occasional irrigation of oiled supratidal zones could be a useful supporting strategy to remediation processes.


Assuntos
Poluição por Petróleo , Petróleo , Biodegradação Ambiental , Ecossistema , Hidrocarbonetos , Água do Mar
9.
Sci Total Environ ; 762: 143165, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33131842

RESUMO

Hypersaline environments are found around the world, above and below ground, and many are exposed to hydrocarbons on a continuous or a frequent basis. Some surface hypersaline environments are exposed to hydrocarbons because they have active petroleum seeps while others are exposed because of oil exploration and production, or nearby human activities. Many oil reservoirs overlie highly saline connate water, and some national oil reserves are stored in salt caverns. Surface hypersaline ecosystems contain consortia of halophilic and halotolerant microorganisms that decompose organic compounds including hydrocarbons, and subterranean ones are likely to contain the same. However, the rates and extents of hydrocarbon biodegradation are poorly understood in such ecosystems. Here we describe hypersaline environments potentially or likely to become contaminated with hydrocarbons, including perennial and transient environments above and below ground, and discuss what is known about the microbes degrading hydrocarbons and the extent of their activities. We also discuss what limits the microbial hydrocarbon degradation in hypersaline environments and whether there are opportunities for inhibiting (oil storage) or stimulating (oil spills) such biodegradation as the situation requires.


Assuntos
Poluição por Petróleo , Petróleo , Biodegradação Ambiental , Ecossistema , Humanos , Hidrocarbonetos
11.
Microorganisms ; 6(3)2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941798

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are common organic contaminants found in anoxic environments. The capacity for PAH biodegradation in unimpacted environments, however, has been understudied. Here we investigate the enrichment, selection, and sustainability of a microbial community from a pristine environment on naphthalene as the only amended carbon source. Pristine coastal sediments were obtained from the Jacques Cousteau National Estuarine Research Reserve in Tuckerton, New Jersey, an ecological reserve which has no direct input or source of hydrocarbons. After an initial exposure to naphthalene, primary anaerobic transfer cultures completely degraded 500 µM naphthalene within 139 days. Subsequent transfer cultures mineralized naphthalene within 21 days with stoichiometric sulfate loss. Enriched cultures efficiently utilized only naphthalene and 2-methylnaphthalene from the hydrocarbon mixtures in crude oil. To determine the microorganisms responsible for naphthalene degradation, stable isotope probing was utilized on cultures amended with fully labeled 13C-naphthalene as substrate. Three organisms were found to unambiguously synthesize 13C-DNA from 13C-naphthalene within 7 days. Phylogenetic analysis revealed that 16S rRNA genes from two of these organisms are closely related to the known naphthalene degrading isolates NaphS2 and NaphS3 from PAH-contaminated sites. A third 16S rRNA gene was only distantly related to its closest relative and may represent a novel naphthalene degrading microbe from this environment.

12.
Environ Sci Technol ; 52(11): 6098-6112, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29709187

RESUMO

Future oil exploration and marine navigation may well extend into the Arctic Ocean, and government agencies and responders need to plan for accidental oil spills. We argue that dispersants should play an important role in these plans, since they have substantial logistical benefits, work effectively under Arctic conditions, and stimulate the rapid biodegradation of spilled oil. They also minimize the risk of surface slicks to birds and mammals, the stranding of oil on fragile shorelines and minimize the need for large work crews to be exposed to Arctic conditions.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Regiões Árticas , Biodegradação Ambiental , Aves
13.
J Am Chem Soc ; 139(33): 11519-11526, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28750509

RESUMO

Sulfur-based thiyl radicals are known to be involved in a wide range of chemical and biological processes, but they are often highly reactive, which makes them difficult to observe directly. We report herein X-ray absorption spectra and analysis that support the direct observation of two different thiyl species generated photochemically by X-ray irradiation. The thiyl radical sulfur K-edge X-ray absorption spectra of both species are characterized by a uniquely low energy transition at about 2465 eV, which occurs at a lower energy than any previously observed feature at the sulfur K-edge and corresponds to a 1s→3p transition to the singly occupied molecular orbital of the free radical. Our results constitute the first observation of substantial levels of thiyl radicals generated by X-ray irradiation and detected by sulfur K-edge X-ray absorption spectroscopy.


Assuntos
Radicais Livres/química , Enxofre/química , Espectroscopia por Absorção de Raios X/métodos , Derivados de Benzeno/química , Glutationa/química , Radical Hidroxila/química , Modelos Moleculares , Processos Fotoquímicos , Raios X
14.
Environ Sci Technol ; 51(3): 1278-1284, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-27700058

RESUMO

Various groups have studied the rate of oil biodegradation in the sea over many years, but with no consensus on results. This can be attributed to many factors, but we show here that the principal confounding influence is the concentration of oil used in different experiments. Because of dilution, measured concentrations of dispersed oil in the sea are sub-parts-per-million within a day of dispersal, and at such concentrations the rate of biodegradation of detectable oil hydrocarbons has an apparent half-life of 7-14 days. This can be contrasted with the rate of degradation at the higher concentrations found in oil slicks or when stranded on a shoreline; there the apparent half-life varies from many months to many years.


Assuntos
Biodegradação Ambiental , Petróleo/metabolismo , Meia-Vida , Hidrocarbonetos/metabolismo
15.
J Phys Chem A ; 120(37): 7279-86, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27571342

RESUMO

Sulfur K-edge X-ray absorption spectroscopy increasingly is used as a tool to provide speciation information about the sulfur chemical form in complex samples, with applications ranging from fossil fuels to soil science to health research. As part of an ongoing program of systematic investigations of the factors that affect the variability of sulfur K near-edge spectra, we have examined the X-ray absorption spectra of a series of organic symmetric disulfide compounds. We have used polarized sulfur K-edge spectra of single crystals of dibenzyl disulfide to confirm the assignments of the major transitions in the spectrum as 1s → (S-S)σ* and 1s → (S-C)σ*. We also have examined the solution spectra of an extended series of disulfides and show that the spectra change in a systematic and predictable manner with the nature of the external group.

16.
Mar Pollut Bull ; 111(1-2): 354-357, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27402500

RESUMO

Oil biodegradation at a simulated depth of 1500m was studied in a high-pressure apparatus at 5°C, using natural seawater with its indigenous microbes, and 3ppm of an oil with dispersant added at a dispersant:oil ratio of 1:15. Biodegradation of the detectable hydrocarbons was prompt and extensive (>70% in 35days), although slower by about a third than under otherwise identical conditions equivalent to the surface. The apparent half-life of biodegradation of the total detectable hydrocarbons at 15MPa was 16days (compared to 13days at atmospheric pressure), although some compounds, such as the four-ring aromatic chrysene, were degraded rather more slowly.


Assuntos
Biodegradação Ambiental , Petróleo/metabolismo , Meia-Vida , Hidrocarbonetos/metabolismo , Oceanos e Mares , Poluição por Petróleo , Pressão , Água do Mar
19.
Photosynth Res ; 127(2): 237-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26202746

RESUMO

Colin Allen Wraight, a central figure in photosynthetic electron transfer research since the 1970s, died in Urbana, Illinois, on July 10, 2014. Born in London, England, on November 27, 1945, he had only recently retired from his position as a Professor in Biochemistry, Biophysics & Quantitative Biology, and Plant Biology at the University of Illinois at Urbana-Champaign. Wraight was known especially for his pioneering studies on electron and proton transfer in the photochemical reaction center, and for his careful quantitation of the remarkable quantum efficiency of this device.


Assuntos
Biofísica/história , História do Século XX , História do Século XXI , Reino Unido , Estados Unidos
20.
Environ Sci Technol ; 50(5): 2121-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26698270

RESUMO

Crude oil has been part of the marine environment for millions of years, and microbes that use its rich source of energy and carbon are found in seawater, sediments, and shorelines from the tropics to the polar regions. Catastrophic oil spills stimulate these organisms to "bloom" in a reproducible fashion, and although oil does not provide bioavailable nitrogen, phosphorus or iron, there are enough of these nutrients in the sea that when dispersed oil droplets dilute to low concentrations these low levels are adequate for microbial growth. Most of the hydrocarbons in dispersed oil are degraded in aerobic marine waters with a half-life of days to months. In contrast, oil that reaches shorelines is likely to be too concentrated, have lower levels of nutrients, and have a far longer residence time in the environment. Oil that becomes entrained in anaerobic sediments is also likely to have a long residence time, although it too will eventually be biodegraded. Thus, data that encompass everything from the ecosystem to the molecular level are needed for understanding the complicated process of petroleum biodegradation in marine environments.


Assuntos
Poluição por Petróleo , Petróleo/metabolismo , Água do Mar/microbiologia , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Meia-Vida , Hidrocarbonetos/metabolismo , Nitrogênio , Fósforo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...