Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Environ Public Health ; 2023: 9694467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761242

RESUMO

This study is aimed at comparatively analyzing solid waste management practices and challenges in urban and rural senior high schools in the Ashanti region of Ghana. Multiple sampling techniques (simple random, stratified sampling, convenience sampling, stratified proportionate sampling, etc.) were used to sort 370 samples. Independent Sample t-test was used to compare solid waste management practices in rural and urban senior high schools. Mean and standard deviation were further used to examine the challenges the schools faced in managing waste. The study found that both rural and urban senior high schools had waste management practice systems in place but they were dissimilar. However, in both urban and rural senior high schools, the issue of inadequate resources for effective waste management was ubiquitous challenge confronting both set of schools in managing waste. Further, while poor student attitude towards waste management was a major constraint for rural schools, the urban schools had a challenge in terms of poor waste collection routine. Formation of environmental education clubs by school authorities among student can be a sine qua non for effective waste management practices among students, particularly for the rural folks. Again, waste management policies by the District Assemblies should not be exclusive to only the communities, as senior high schools have been experiencing population explosion with the introduction of the free senior high school policy.


Assuntos
Resíduos Sólidos , Gerenciamento de Resíduos , Humanos , Gana , Instituições Acadêmicas , População Rural , Gerenciamento de Resíduos/métodos
2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22283600

RESUMO

The outbreak of the severe acute respiratory syndrome coronavirus 2 started in Wuhan, China, towards the end of 2019 and spread worldwide. The rapid spread of the disease can be attributed to many factors including its high infectiousness and the high rate of human mobility around the world. Although travel/movement restrictions and other non-pharmaceutical interventions aimed at controlling the disease spread were put in place during the early stages of the pandemic, these interventions did not stop COVID-19 spread. To better understand the impact of human mobility on the spread of COVID-19 between regions, we propose a hybrid gravity-metapopulation model of COVID-19. Our model explicitly incorporates time-dependent human mobility into the disease transmission rate, and has the potential to incorporate other factors that affect disease transmission such as facemasks, physical distancing, contact rates, etc. An important feature of this modeling framework is its ability to independently assess the contribution of each factor to disease transmission. Using a Bayesian hierarchical modeling framework, we calibrate our model to the weekly reported cases of COVID-19 in thirteen local health areas in metro Vancouver, British Columbia (BC), Canada, from July 2020 to January 2021. We consider two main scenarios in our model calibration: using a fixed distance matrix and time-dependent weekly mobility matrices. We found that the distance matrix provides a better fit to the data, whilst the mobility matrices have the ability to explain the variance in transmission between regions. This result shows that the mobility data provides more information in terms of disease transmission than the distances between the regions.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265177

RESUMO

Following the emergence of COVID-19 at the end of 2019, several mathematical models have been developed to study the transmission dynamics of this disease. Many of these models assume homogeneous mixing in the underlying population. However, contact rates and mixing patterns can vary dramatically among individuals depending on their age and activity level. Variation in contact rates among age groups and over time can significantly impact how well a model captures observed trends. To properly model the age-dependent dynamics of COVID-19 and understand the impacts of interventions, it is essential to consider heterogeneity arising from contact rates and mixing patterns. We developed an age-structured model that incorporates time-varying contact rates and population mixing computed from the ongoing BC Mix COVID-19 survey to study transmission dynamics of COVID-19 in British Columbia (BC), Canada. Using a Bayesian inference framework, we fit four versions of our model to weekly reported cases of COVID-19 in BC, with each version allowing different assumptions of contact rates. We show that in addition to incorporating age-specific contact rates and mixing patterns, time-dependent (weekly) contact rates are needed to adequately capture the observed transmission dynamics of COVID-19. Our approach provides a framework for explicitly including empirical contact rates in a transmission model, which removes the need to otherwise model the impact of many non-pharmaceutical interventions. Further, this approach allows projection of future cases based on clear assumptions of age-specific contact rates, as opposed to less tractable assumptions regarding transmission rates.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263649

RESUMO

PurposeClose-contact rates are thought to be a significant driving force behind the dynamics of transmission for many infectious respiratory diseases. Efforts to control such infections typically focus on the practice of strict contact-avoidance measures. Yet, contact rates and their relation to transmission, and the impact of control measures, are seldom quantified. Here, we quantify the response of contact rates, transmission and new cases of COVID-19 to public health contact-restriction orders, and the associations among these three variables, in the Canadian province of British Columbia (BC) and within its two most densely populated regional health authorities: Fraser Health Authority (FHA) and Vancouver Coastal Health Authority (VCHA). MethodsWe obtained time series for self-reported close-contact rates from the BC Mix COVID-19 Survey, new reported cases of COVID-19 from the BC Center for Disease Control, and transmission rates based on dynamic model fits to reported cases. Our study period was from September 13, 2020 to February 19, 2021, during which three public health contact-restriction orders were introduced (October 26, November 7 and November 19, 2020). We used segmented linear regression to quantify impacts of public health orders, Pearson correlation to assess the instantaneous relation between contact rates and transmission, and vector autoregressive modeling to study the lagged relations among the three variables. ResultsOverall, declines in contact rates and transmission occurred concurrently with the announcement of public health orders, whereas declines in new cases showed a reporting delay of roughly two weeks. The impact of the first public health order (October 26, 2020) on contact rates and transmission was more pronounced than that of the other two health orders. Contact rates and transmission on the same day were strongly correlated (correlation coefficients = 0.64, 0.53 and 0.34 for BC, FHA, and VCHA, respectively). Moreover, contact rates were a significant time-series driver of COVID-19 and explained roughly 30% and 18% of the variation in new cases and transmission, respectively. Interestingly, increases in transmission and new cases were followed by reduced rates of contact: overall, average daily cases explained about 10% of the variation in provincial contact rates. ConclusionWe show that close-contact rates were a significant driver of transmission of COVID-19 in British Columbia, Canada and that they varied in response to public health orders. Our results also suggest a possible feedback, by which contact rates respond to recent changes in reported cases. Our findings help to explain and validate the commonly assumed, but rarely measured, response of close contact rates to public health guidelines and their impact on the dynamics of infectious diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA