Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Thorax ; 72(2): 137-147, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27852956

RESUMO

We have recently shown that non-viral gene therapy can stabilise the decline of lung function in patients with cystic fibrosis (CF). However, the effect was modest, and more potent gene transfer agents are still required. Fuson protein (F)/Hemagglutinin/Neuraminidase protein (HN)-pseudotyped lentiviral vectors are more efficient for lung gene transfer than non-viral vectors in preclinical models. In preparation for a first-in-man CF trial using the lentiviral vector, we have undertaken key translational preclinical studies. Regulatory-compliant vectors carrying a range of promoter/enhancer elements were assessed in mice and human air-liquid interface (ALI) cultures to select the lead candidate; cystic fibrosis transmembrane conductance receptor (CFTR) expression and function were assessed in CF models using this lead candidate vector. Toxicity was assessed and 'benchmarked' against the leading non-viral formulation recently used in a Phase IIb clinical trial. Integration site profiles were mapped and transduction efficiency determined to inform clinical trial dose-ranging. The impact of pre-existing and acquired immunity against the vector and vector stability in several clinically relevant delivery devices was assessed. A hybrid promoter hybrid cytosine guanine dinucleotide (CpG)- free CMV enhancer/elongation factor 1 alpha promoter (hCEF) consisting of the elongation factor 1α promoter and the cytomegalovirus enhancer was most efficacious in both murine lungs and human ALI cultures (both at least 2-log orders above background). The efficacy (at least 14% of airway cells transduced), toxicity and integration site profile supports further progression towards clinical trial and pre-existing and acquired immune responses do not interfere with vector efficacy. The lead rSIV.F/HN candidate expresses functional CFTR and the vector retains 90-100% transduction efficiency in clinically relevant delivery devices. The data support the progression of the F/HN-pseudotyped lentiviral vector into a first-in-man CF trial in 2017.


Assuntos
Fibrose Cística/genética , Fibrose Cística/terapia , Terapia Genética/métodos , Lentivirus/genética , Animais , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Camundongos , Fator 1 de Elongação de Peptídeos , Regiões Promotoras Genéticas
2.
Biomaterials ; 93: 20-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27061267

RESUMO

Non-viral aerosol gene therapy offers great potential for treating chronic lung diseases of the airways such as cystic fibrosis (CF). Early clinical trials showed that transgene expression in the airways was transient whereas maximal duration of transgene expression is essential in order to minimise the frequency of aerosol treatments. Improved vector design, such as careful selection of the promoter/enhancer, can lead to more persistent levels of transgene expression, but multiple factors affect expression in vivo. Following aerosol delivery to the lungs of mice, we measured reporter gene expression from a CpG-free luciferase transgene cassette in the context of both a plasmid and minicircle vector configuration and showed that the vector backbone had no effect on expression. Transgene activity was affected by the vector backbone however, when a similar, but sub-optimal CpG-containing transgene was used, suggesting that aspects of the plasmid backbone had a negative impact on transgene expression. Similar studies were performed in Toll-like receptor-9 (TLR9) knockout mice to investigate a potential role for the TLR9 signalling pathway in detecting CpGs in the vector sequence. Even in the absence of TLR9, persistent expression could only be achieved with a CpG-free transgene. Together, these data indicate that in order to achieve high levels of persistent expression in vivo, a CpG-free transgene cassette is required.


Assuntos
Expressão Gênica , Pulmão/metabolismo , Oligodesoxirribonucleotídeos/genética , Plasmídeos/metabolismo , Transgenes , Animais , Sequência de Bases , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Luciferases/metabolismo , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Toll-Like 9/metabolismo
3.
Mol Ther Nucleic Acids ; 2: e65, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23322014

RESUMO

Lung pathology in cystic fibrosis is linked to dehydration of the airways epithelial surface which in part results from inappropriately raised sodium reabsorption through the epithelial sodium channel (ENaC). To identify a small-interfering RNA (siRNA) which selectively inhibits ENaC expression, chemically modified 21-mer siRNAs targeting human ENaCα were designed and screened. GSK2225745, was identified as a potent inhibitor of ENaCα mRNA (EC(50) (half maximal effective concentration) = 0.4 nmol/l, maximum knockdown = 85%) and protein levels in A549 cells. Engagement of the RNA interference (RNAi) pathway was confirmed using 5' RACE. Further profiling was carried out in therapeutically relevant human primary cells. In bronchial epithelial cells, GSK2225745 elicited potent suppression of ENaCα mRNA (EC(50) = 1.6 nmol/l, maximum knockdown = 82%). In human nasal epithelial cells, GSK2225745 also produced potent and long-lasting (≥72 hours) suppression of ENaCα mRNA levels which was associated with significant inhibition of ENaC function (69% inhibition of amiloride-sensitive current in cells treated with GSK2225745 at 10 nmol/l). GSK2225745 showed no evidence for potential to stimulate toll-like receptor (TLR)3, 7 or 8. In vivo, topical delivery of GSK2225745 in a lipid nanoparticle formulation to the airways of mice resulted in significant inhibition of the expression of ENaCα in the lungs. In conclusion, GSK2225745 is a potent inhibitor of ENaCα expression and warrants further evaluation as a potential novel inhaled therapeutic for cystic fibrosis.Molecular Therapy - Nucleic Acids (2013) 2, e65; doi:10.1038/mtna.2012.57; published online 15 January 2013.

4.
J Mol Med (Berl) ; 90(12): 1487-96, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22767241

RESUMO

Transcriptional control of transgene expression is crucial to successful gene therapy, yet few promoter/enhancer combinations have been tested in clinical trials. We created a simple, desktop computer database and populated it with promoter sequences from publicly available sources. From this database, we rapidly identified novel CpG-free promoter sequences suitable for use in non-inflammatory, non-viral in vivo gene transfer. In a simple model of lung gene transfer, five of the six promoter elements selected, chosen without prior knowledge of their transcriptional activities, directed significant transgene expression. Each of the five novel promoters directed transgene expression for at least 14 days post-delivery, greatly exceeding the duration achieved with the commonly used CpG-rich viral enhancer/promoters. Novel promoter activity was also evaluated in a more clinically relevant model of aerosol-mediated lung gene transfer and in the liver following delivery via high-pressure tail vein injection. In each case, the novel CpG-free promoters exhibited higher and/or more sustained transgene expression than commonly used CpG-rich enhancer/promoter sequences. This study demonstrates that novel CpG-free promoters can be readily identified and that they can direct significant levels of transgene expression. Furthermore, the database search criteria can be quickly adjusted to identify other novel promoter elements for a variety of transgene expression applications.


Assuntos
Terapia Genética/métodos , Regiões Promotoras Genéticas/genética , Vetores Genéticos/genética , Transgenes/genética
5.
Biomaterials ; 33(28): 6833-42, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22727465

RESUMO

Clinical studies are underway for the aerosol delivery of plasmid DNA complexed with Genzyme Lipid GL67A to the lungs of patients with cystic fibrosis (CF). Plasmid vectors contain several functional elements all of which play a role in determining the efficacy of the final clinical product. To optimise the final plasmid, variations of CpG-free 5' enhancer elements and 3'UTR regions were inserted into a common CpG-free, plasmid backbone containing Luciferase or CFTR transgenes. Plasmids were compared in immortalised cell culture, human airway liquid interface primary cell cultures, and mouse lung models to determine which design directed optimal transgene expression. Following aerosol delivery to mouse lung, plasmids containing the murine CMV enhancer showed higher peak Luciferase activity than the human CMV enhancer, but the human version resulted in persistent expression. In cell culture, the SV40 3'UTR and a novel BGH2 3'UTR exhibited up to 20-fold higher Luciferase activity than the commonly used BGH 3'UTR, but in mouse lung aerosol studies the activity and duration was greater for BGH 3'UTR. Systematic evaluation of each functional component of the plasmid has resulted in an improved design, exhibiting superior levels and duration of lung gene expression.


Assuntos
Fibrose Cística/terapia , Elementos Facilitadores Genéticos , Técnicas de Transferência de Genes , Terapia Genética/métodos , Plasmídeos/genética , Regiões Promotoras Genéticas , Aerossóis/química , Animais , Ilhas de CpG/genética , Regulador de Condutância Transmembrana em Fibrose Cística/administração & dosagem , Regulador de Condutância Transmembrana em Fibrose Cística/química , DNA/administração & dosagem , Feminino , Expressão Gênica/genética , Células HEK293 , Humanos , Luciferases/administração & dosagem , Luciferases/química , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Plasmídeos/administração & dosagem , Transgenes
6.
Biomaterials ; 33(22): 5618-27, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22575838

RESUMO

Aerosol gene therapy offers great potential for treating acquired and inherited lung diseases. For treatment of chronic lung diseases such as cystic fibrosis, asthma and emphysema, non-viral gene therapy will likely require repeated administration to maintain transgene expression in slowly dividing, or terminally differentiated, lung epithelial cells. When complexed with plasmid DNA (pDNA), the synthetic polymer, 25 kDa branched Polyethylenimine (PEI), can be formulated for aerosol delivery to the lungs. We show that pDNA/PEI aerosol formulations can be repeatedly administered to airways of mice on at least 10 occasions with no detectable toxicity. Interestingly, peak reporter gene activity upon repeated delivery was significantly reduced by up to 75% compared with a single administration, despite similar pDNA lung deposition at each subsequent aerosol exposure. Although the precise mechanism of inhibition is unknown, it is independent of mouse strain, does not involve an immune response, and is mediated by PEI. Importantly, using a dosing interval of 56 days, delivery of a fourth-generation, CpG-free plasmid generated high-level, sustained transgene expression, which was further boosted at subsequent administrations. Together these data indicate that pDNA/PEI aerosol formulations offer a versatile platform for gene delivery to the lung resulting in sustained transgene expression suitable for treatment of chronic lung diseases.


Assuntos
Ilhas de CpG/genética , Portadores de Fármacos/química , Regulação da Expressão Gênica/genética , Iminas/química , Pulmão/fisiologia , Plasmídeos/administração & dosagem , Plasmídeos/genética , Polietilenos/química , Administração por Inalação , Aerossóis/administração & dosagem , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Distribuição Tecidual
7.
Biomaterials ; 31(9): 2665-72, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20022367

RESUMO

We have assessed whether viscoelastic gels known to inhibit mucociliary clearance can increase lipid-mediated gene transfer. Methylcellulose or carboxymethylcellulose (0.25-1.5%) was mixed with complexes of the cationic lipid GL67A and plasmids encoding luciferase and perfused onto the nasal epithelium of mice. Survival after perfusion with 1% CMC or 1% MC was 90 and 100%, respectively. In contrast 1.5% CMC was uniformly lethal likely due to the viscous solution blocking the airways. Perfusion with 0.5% CMC containing lipid/DNA complexes reproducibly increased gene expression by approximately 3-fold (n=16, p<0.05). Given this benefit, likely related to increased duration of contact, we also assessed the effect of prolonging contact time of the liposome/DNA complexes by delivering our standard 80 microg DNA dose over either approximately 22 or 60 min of perfusion. This independently increased gene transfer by 6-fold (n=8, p<0.05) and could be further enhanced by the addition of 0.5% CMC, leading to an overall 25-fold enhancement (n=8, p<0.001) in gene expression. As a result of these interventions CFTR transgene mRNA transgene levels were increased several logs above background. Interestingly, this did not lead to correction of the ion transport defects in the nasal epithelium of cystic fibrosis mice nor for immunohistochemical quantification of CFTR expression. To assess if 0.5% CMC also increased gene transfer in the mouse lung, we used whole body nebulisation chambers. CMC was nebulised for 1h immediately before, or simultaneously with GL67A/pCIKLux. The former did not increase gene transfer, whereas co-administration significantly increased gene transfer by 4-fold (p<0.0001, n=18). This study suggests that contact time of non-viral gene transfer agents is a key factor for gene delivery, and suggests two methods which may be translatable for use in man.


Assuntos
Carboximetilcelulose Sódica/metabolismo , Técnicas de Transferência de Genes , Sistema Respiratório/metabolismo , Animais , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Géis , Regulação da Expressão Gênica , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Potenciais da Membrana , Camundongos , Nebulizadores e Vaporizadores , Perfusão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Vírus/genética
8.
J Biol Chem ; 284(39): 26978-87, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19638341

RESUMO

Import of exogenous plasmid DNA (pDNA) into mammalian cell nuclei represents a key intracellular obstacle to efficient non-viral gene delivery. This includes access of the pDNA to the nuclei of non-dividing cells where the presence of an intact nuclear membrane is limiting for gene transfer. Here we identify, isolate, and characterize, cytoplasmic determinants of pDNA nuclear import into digitonin-permeabilized HeLa cells. Depletion of putative DNA-binding proteins, on the basis of their ability to bind immobilized pDNA, abolished pDNA nuclear import supporting the critical role of cytoplasmic factors in this process. Elution of pDNA-bound proteins, followed by two-dimensional sodium dodecyl polyacrylamide gel electrophoresis identified several candidate DNA shuttle proteins. We show that two of these, NM23-H2, a ubiquitous c-Myc transcription-activating nucleoside diphosphate kinase, and the core histone H2B can both reconstitute pDNA nuclear import. Further, we demonstrate a significant increase in gene transfer in non-dividing HeLa cells transiently transfected with pDNA containing binding sequences from two of the DNA shuttle proteins, NM23-H2 and the homeobox transcription factor Chx10. These data support the hypothesis that exogenous pDNA binds to cytoplasmic shuttle proteins and is then translocated to the nucleus using the minimal import machinery. Importantly, increasing the binding of pDNA to shuttle proteins by re-engineering reporter plasmids with shuttle binding sequences enhances gene transfer. Increasing the potential for exogenously added pDNA to bind intracellular transport cofactors may enhance the potency of non-viral gene transfer.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , DNA/metabolismo , Plasmídeos/metabolismo , Transporte Ativo do Núcleo Celular , Extratos Celulares/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citoplasma/química , DNA/genética , Digitonina/química , Digitonina/farmacologia , Eletroforese em Gel Bidimensional , Células HeLa , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Nucleosídeo NM23 Difosfato Quinases/genética , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Plasmídeos/genética , Ligação Proteica , Proteínas/análise , Proteínas/metabolismo , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
9.
Mol Cell Probes ; 23(6): 272-80, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19615439

RESUMO

BACKGROUND: To assess gene therapy treatment for cystic fibrosis (CF) in clinical trials it is essential to develop robust assays that can accurately detect transgene expression in human airway epithelial cells. Our aim was to develop a reproducible immunocytochemical assay for human CFTR protein which can measure both endogenous CFTR levels and augmented CFTR expression after gene delivery. METHODS: We characterised an antibody (G449) which satisfied the criteria for use in clinical trials. We optimised our immunocytochemistry method and identified G449 dilutions at which endogenous CFTR levels were negligible in CF samples, thus enhancing detection of transgenic CFTR protein. After developing a transfection technique for brushed human nasal epithelial cells, we transfected non-CF and CF cells with a clinically relevant CpG-free plasmid encoding human CFTR. RESULTS: The optimised immunocytochemistry method gave improved discrimination between CF and non-CF samples. Transfection of a CFTR expression vector into primary nasal epithelial cells resulted in detectable RNA and protein expression. CFTR protein was present in 0.05-10% of non-CF cells and 0.02-0.8% of CF cells. CONCLUSION: We have developed a sensitive, clinically relevant immunocytochemical assay for CFTR protein and have used it to detect transgene-expressed CFTR in transfected human primary airway epithelial cells.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Células Epiteliais/metabolismo , Imuno-Histoquímica/métodos , Transgenes , Anticorpos/imunologia , Células Cultivadas , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/imunologia , Células Epiteliais/patologia , Terapia Genética/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , Reprodutibilidade dos Testes , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transfecção
10.
Nat Biotechnol ; 26(5): 549-51, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18438402

RESUMO

Pulmonary delivery of plasmid DNA (pDNA)/cationic liposome complexes is associated with an acute unmethylated CG dinucleotide (CpG)-mediated inflammatory response and brief duration of transgene expression. We demonstrate that retention of even a single CpG in pDNA is sufficient to elicit an inflammatory response, whereas CpG-free pDNA vectors do not. Using a CpG-free pDNA expression vector, we achieved sustained (>or=56 d) in vivo transgene expression in the absence of lung inflammation.


Assuntos
Ilhas de CpG/genética , Marcação de Genes/métodos , Terapia Genética/métodos , Inflamação/genética , Inflamação/prevenção & controle , Pulmão/metabolismo , Plasmídeos/genética , Plasmídeos/uso terapêutico , Animais
11.
J Gene Med ; 9(5): 369-80, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17410613

RESUMO

BACKGROUND: Existing methods of non-viral airway gene transfer suffer from low levels of efficiency. Electroporation has been used to enhance gene transfer in a range of tissues. Here we assess the usefulness of electroporation for enhancing gene transfer in the lungs of mice and sheep. METHODS: Naked plasmid DNA (pDNA) expressing either luciferase or green fluorescent protein (GFP) was delivered to mouse lungs by instillation. Following surgical visualisation, the lungs were directly electroporated and the level and duration of luciferase activity was assessed and cell types that were positive for GFP were identified in lung cryosections. Naked pDNA was nebulised to the sheep lung and electrodes attached to the tip of a bronchoscope were used to electroporate airway segment bifurcations, Luciferase activity was assessed in electroporated and control non-electroporated regions, after 24 h. RESULTS: Following delivery of naked pDNA to the mouse lung, electroporation resulted in up to 400-fold higher luciferase activity than naked pDNA alone when luciferase was under the control of a cytomegalovirus (CMV) promoter. Following delivery of a plasmid containing the human polyubiquitin C (UbC) promoter, electroporation resulted in elevated luciferase activity for at least 28 days. Visualisation of GFP indicated that electroporation resulted in increased GFP detection compared with non-electroporated controls. In the sheep lung electroporation of defined sites in the airways resulted in luciferase activity 100-fold greater than naked pDNA alone. CONCLUSIONS: These results indicate that electroporation can be used to enhance gene transfer in the lungs of mice and sheep without compromising the duration of expression.


Assuntos
Eletroporação , Técnicas de Transferência de Genes , Genes Reporter/genética , Pulmão/citologia , Plasmídeos/genética , Animais , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Humanos , Cinética , Luciferases/genética , Pulmão/metabolismo , Camundongos , Regiões Promotoras Genéticas , Ovinos
12.
J Gene Med ; 8(2): 242-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16389627

RESUMO

OBJECTIVES: Human interleukin 10 (hIL-10) may reduce acute rejection after organ transplantation. Our previous data shows that electroporation-mediated transfer of plasmid DNA to peripheral muscle enhances gene transduction dramatically. This study was designed to investigate the effect of electroporation-mediated overexpression of hIL-10 on acute rejection of cardiac allografts in the rat. METHODS: The study was designed to evaluate the effect of hIL-10 gene transfer on (a) early rejection pattern and (b) graft survival. Gene transfer was achieved by intramuscular (i.m.) injection into the tibialis anterior muscle of Fischer (F344) male recipients followed by electroporation 24 h prior to transplantation. Heterotopic cardiac transplantation was performed from male Brown Norway rat to F344. Four groups were studied (n = 6). Treated animals in groups B1 and B2 received 2.5 microg of pCIK hIL-10 and control animals in groups A1 and A2 distilled water. Graft function was assessed by daily palpation. Animals from group A1 were sacrificed at the cessation of the heart beat of the graft and those in group B1 were sacrificed at day 7; blood was taken for ELISA measurement of hIL-10 and tissue for myeloperoxidase (MPO) measurement and histological assessment. To evaluate graft survival, groups A2 and B2 were sacrificed at cessation of the heart beat of the graft. RESULTS: Histological examination revealed severe rejection (IIIB-IV) in group A1 in contrast to low to moderate rejection (IA-IIIA) in group B1 (p = 0.02). MPO activity was significantly lower in group B1 compared to group A1 (18 +/- 7 vs. 32 +/- 14 mU/mg protein, p = 0.05). Serum hIL-10 levels were 46 +/- 13 pg/ml in group B1 vs. 0 pg/ml in group A1. At day 7 all heart allografts in the treated groups B1 and B2 were beating, whereas they stopped beating at 5 +/- 2 days in groups A1 and A2 vs. 14 +/- 2 days in group B2 (p = 0.0012). CONCLUSIONS: Electroporation-mediated intramuscular overexpression of hIL-10 reduces acute rejection and improves survival of heterotopic heart allografts in rats. This study demonstrates that peripheral overexpression of specific genes in skeletal muscle may reduce acute rejection after whole organ transplantation.


Assuntos
Eletroporação , Terapia Genética , Rejeição de Enxerto/prevenção & controle , Transplante de Coração , Interleucina-10/genética , Músculo Esquelético/metabolismo , Animais , Sobrevivência de Enxerto/genética , Humanos , Interleucina-10/biossíntese , Interleucina-10/sangue , Masculino , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344 , Fatores de Tempo , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...