Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 794: 257-269, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27866999

RESUMO

The 5-HT1A/1B-receptor agonist eltoprazine has a behavioral drug signature that resembles that of a variety of psychostimulant drugs, despite the differences in receptor binding profile. These psychostimulants are effective in treating impulsivity disorders, most likely because they increase norepinephrine (NE) and dopamine (DA) levels in the prefrontal cortex. Both amphetamine and methylphenidate, however, also increase dopamine levels in the nucleus accumbens (NAc), which has a significant role in motivation, pleasure, and reward. How eltoprazine affects monoamine release in the medial prefrontal cortex (mPFC), the orbitofrontal cortex (OFC), and the NAc is unknown. It is also unknown whether eltoprazine affects different forms of impulsivity and brain reward mechanisms. Therefore, in the present study, we investigate the effects of eltoprazine in rats in the following sequence: 1) the activity of the monoaminergic systems using in vivo microdialysis, 2) motivation for reward measured using the intracranial self-stimulation (ICSS) procedure, and finally, 3) "waiting" impulsivity in the delay-aversion task, and the "stopping" impulsivity in the stop-signal task. The microdialysis studies clearly showed that eltoprazine increased DA and NE release in both the mPFC and OFC, but only increased DA concentration in the NAc. In contrast, eltoprazine decreased 5-HT release in the mPFC and NAc (undetectable in the OFC). Remarkably, eltoprazine decreased impulsive choice, but increased impulsive action. Furthermore, brain stimulation was less rewarding following eltoprazine treatment. These results further support the long-standing hypothesis that "waiting" and "stopping" impulsivity are regulated by distinct neural circuits, because 5-HT1A/1B-receptor activation decreases impulsive choice, but increases impulsive action.


Assuntos
Dopamina/metabolismo , Comportamento Impulsivo/efeitos dos fármacos , Motivação/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Piperazinas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Animais , Comportamento de Escolha/efeitos dos fármacos , Masculino , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1B de Serotonina/metabolismo , Recompensa
2.
Eur J Pharmacol ; 753: 88-104, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25592320

RESUMO

First line antidepressants are the so-called SSRIs (selective serotonin reuptake inhibitors), e.g. fluvoxamine, fluoxetine, sertraline, paroxetine and escitalopram. Unfortunately, these drugs mostly do not provide full symptom relief and have a slow onset of action. Therefore other antidepressants are also being prescribed that inhibit the reuptake of norepinephrine (e.g. reboxetine, desipramine) or the reuptake of both serotonin (5-HT) and norepinephrine (e.g. venlafaxine, duloxetine, milnacipran). Nevertheless, many patients encounter residual symptoms such as impaired pleasure, impaired motivation, and lack of energy. It is hypothesized that an impaired brain reward system may underlie these residual symptoms. In agreement, there is some evidence that reuptake inhibitors of both norepinephrine and dopamine (e.g. methylphenidate, bupropion, nomifensine) affect these residual symptoms. In the pipeline are new drugs that block all three monoamine transporters for the reuptake of 5-HT, norepinephrine and dopamine, the so-called triple reuptake inhibitors (TRI). The working mechanisms of the above-mentioned antidepressants are discussed, and it is speculated whether depressed patients with different symptoms, sometimes even opposite ones due to atypical or melancholic features, can be matched with the different drug treatments available. In other words, is personalized medicine for major depression an option in the near future?


Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Medicina de Precisão/métodos , Animais , Antidepressivos/farmacologia , Encéfalo/efeitos dos fármacos , Endofenótipos , Humanos , Inibidores da Captação de Neurotransmissores/farmacologia , Inibidores da Captação de Neurotransmissores/uso terapêutico , Recompensa
3.
Eur J Pharmacol ; 725: 55-63, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24444442

RESUMO

Peripheral administration of lipopolysaccharide (LPS) in rodents induces anhedonia, i.e. the inability to experience pleasure. Recently, we reported that serotonin transporter (SERT) function is required for LPS-induced anhedonia. Less is known about the effect of LPS on the biological activity of dopamine transporters (DAT) and norepinephrine transporters (NET). Therefore, in vivo microdialysis was performed in the nucleus accumbens and medial prefrontal cortex of C57BL6/J mice exposed to saline or LPS (133 µg/kg i.p.). To investigate the possible involvement of different monoamine transporters, the triple reuptake inhibitor DOV 216,303 or saline was i.p. injected 30 min before the saline/LPS injection. The dose of LPS, shown to decrease responding for brain stimulation reward in mice, significantly increased extracellular levels of monoamine metabolites (5-HIAA, DOPAC and HVA) in the nucleus accumbens and medial prefrontal cortex. Remarkably, DOV 216,303 abolished LPS-induced DOPAC and HVA formation in the nucleus accumbens, suggesting that LPS increases DAT activity in this brain area. DOV 216,303 also inhibited LPS-induced DOPAC and HVA formation in the medial prefrontal cortex. Since DAT density is very low in this brain structure, reuptake of DA predominantly takes place via NET, suggesting that LPS increases DAT and NET activity in the medial prefrontal cortex. Furthermore, DOV 216,303 pretreatment prevented LPS-induced 5-HIAA formation only in the medial prefrontal cortex, indicating that LPS increases prefrontal SERT activity. In conclusion, the present findings suggest that peripheral LPS increases DAT activity in the nucleus accumbens and increases NET and SERT activity in the medial prefrontal cortex of mice.


Assuntos
Monoaminas Biogênicas/metabolismo , Lipopolissacarídeos/farmacologia , Microdiálise , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Animais , Compostos Aza/farmacologia , Transporte Biológico/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/citologia , Proteínas da Membrana Plasmática de Transporte de Neurotransmissores/antagonistas & inibidores , Córtex Pré-Frontal/citologia
4.
Behav Brain Res ; 253: 191-5, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23896053

RESUMO

Many patients with chronic inflammatory disorders have an abnormal high prevalence of major depression accompanied by elevated levels of tumor necrosis factor-α (TNF-α). We hypothesize that systemic TNF-α increases brain monoamine metabolism, which might induce anhedonia (i.e. a core symptom of major depression). The effect of an intraperitoneal TNF-α injection on extracellular monoamine and metabolite concentrations was investigated by in vivo microdialysis in the nucleus accumbens (NAc) of C57BL/6 mice. In another group, the effects of TNF-α on body weight and intracranial self-stimulation (ICSS) thresholds were measured. TNF-α reduced body weight and increased ICSS thresholds, suggesting a state of anhedonia. TNF-α did not affect serotonin levels, but increased its metabolite 5-HIAA in the NAc. Remarkably, TNF-α also increased the dopamine metabolite HVA, without affecting dopamine levels itself. These data concur with earlier findings that pro-inflammatory cytokines enhance serotonin transporter activity, and possibly also dopamine transporter activity in the brain. However, more research is needed to understand the precise molecular mechanisms by which TNF-α increases transporter activity and anhedonia.


Assuntos
Encéfalo/fisiologia , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Recompensa , Serotonina/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Afeto/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Estimulação Elétrica , Ácido Homovanílico/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Núcleo Accumbens/efeitos dos fármacos , Proteínas Recombinantes/metabolismo
5.
Brain Behav Immun ; 29: 98-103, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23274951

RESUMO

A growing body of evidence suggests that pro-inflammatory cytokines contribute to the pathogenesis of depression. Previously, it has been shown that cytokines (e.g. interferon-α therapy) induce major depression in humans. In addition, administration of the cytokine-inducer lipopolysaccharide (LPS) provokes anhedonia (i.e. the inability to experience pleasure) in rodents. Furthermore, serum pro-inflammatory cytokine levels are increased in depressed patients. Nevertheless, the etiology of cytokine-induced depression is largely unknown. Previously, it has been shown that selective serotonin re-uptake inhibitors decrease serum pro-inflammatory cytokine levels and that pro-inflammatory cytokines increase activity of the serotonin transporter (SERT). The purpose of this study was to explore the effect of partial and complete lack of the SERT in LPS-induced anhedonia assessed in the intracranial self-stimulation (ICSS) paradigm. A single intraperitoneal injection of LPS was used to induce a pro-inflammatory immune response in male serotonin transporter wild type (SERT(+/+)), heterozygous (SERT(+/-)) and knockout (SERT(-/-)) rats. Body weight and ICSS thresholds were measured daily. Although LPS reduced body weight in all genotypes, loss of body weight was less pronounced in SERT(-/-) compared to SERT(+/+) rats. Remarkably, LPS-induced anhedonia was totally abolished in SERT(-/-) rats and as expected was still present in SERT(+/+) and to a lesser extent in SERT(+/-) rats. Therefore, it is concluded that an intact SERT function is needed for pro-inflammatory cytokine-induced anhedonia and weight loss in rats.


Assuntos
Anedonia/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Análise de Variância , Anedonia/fisiologia , Animais , Animais Geneticamente Modificados , Área Sob a Curva , Toxinas Bacterianas/farmacologia , Peso Corporal/efeitos dos fármacos , Encéfalo/fisiologia , Citocinas/farmacologia , Enterotoxinas/farmacologia , Proteínas de Escherichia coli , Deleção de Genes , Masculino , Ratos , Autoestimulação
6.
Eur J Pharmacol ; 693(1-3): 51-6, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23010469

RESUMO

Triple reuptake inhibitors (TRIs) are potential new antidepressants, which not only enhance brain serotonin and norepinephrine concentrations but also increase dopamine levels. Therefore TRIs are believed to have faster therapeutic onset than SSRIs, and may be particularly useful for the treatment of anhedonia (i.e. inability to experience pleasure), one of the core symptoms of major depression. The current study aimed at getting better insight into the rewarding properties of DOV 216,303, which is a TRI, regarding its possible use to treat anhedonia. It is known that psychostimulant drugs lower intracranial self-stimulation (ICSS) reward thresholds, reflecting enhanced brain reward activity, whereas withdrawal from those compounds mostly results in increased ICSS thresholds. Therefore we assessed the effects of DOV 216,303 on ICSS thresholds in rats. Animals were trained in the discrete-trial current-threshold procedure and after stable ICSS reward thresholds were established, animals received one injection per day of DOV 216,303 (20mg/kg) or amphetamine (5mg/kg) for four consecutive days. ICSS thresholds were assessed 3, 6, and 23 h after each injection. DOV 216,303 decreased ICSS thresholds up to 6h after drug treatment. To our knowledge this is the first time that a triple reuptake inhibitor, DOV 216,303, induces relatively long-lasting enhancement of brain reward activity. Elevated ICSS thresholds were found after amphetamine administration, which is consistent with previously reported reward deficits induced after amphetamine-withdrawal.


Assuntos
Antidepressivos/farmacologia , Compostos Aza/farmacologia , Encéfalo/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Inibidores da Captação de Neurotransmissores/farmacologia , Autoestimulação/efeitos dos fármacos , Animais , Encéfalo/fisiologia , Masculino , Ratos , Ratos Wistar , Recompensa
7.
Expert Opin Investig Drugs ; 20(8): 1107-30, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21682663

RESUMO

INTRODUCTION: Major depression is one of the most prevalent forms of mental illnesses and is among the leading causes of disability, affecting about 121 million people worldwide. Approximately 30% of patients fail to respond to present therapies. Therefore, the search for novel antidepressant drugs continues. AREAS COVERED: The most prescribed antidepressants are serotonin reuptake inhibitors and/or noradrenaline reuptake inhibitors, which only indirectly affect dopaminergic neurotransmission. As a consequence, residual symptoms remain, including impaired motivation and impaired pleasure. This article reviews the development of new broad-spectrum antidepressants, the triple reuptake inhibitors, which also increase brain dopamine levels. EXPERT OPINION: In this review, a distinction is made between the subtypes of melancholic and atypical depressions and their associated brain abnormalities and dysfunctions in neurotransmitter systems. Subsequently, we propose a hypothetical model: 'the monoamine hypothesis revisited' to predict what kind of pharmacological treatment will be effective in the different subtypes of depression. It is expected that the triple reuptake inhibitors, inhibiting the reuptake of all three monoamines, can produce a greater efficacy than traditional antidepressants especially in atypical depression. Since triple reuptake inhibitors may also dampen states of hyperglutamatergic activity and subsequent excitotoxicity, it is suggested that these new drugs have a considerable neuroprotective potential in major depression, especially in melancholic depression.


Assuntos
Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Monoaminas Biogênicas/antagonistas & inibidores , Transtorno Depressivo Maior/tratamento farmacológico , Inibidores da Captação de Neurotransmissores/farmacologia , Inibidores da Captação de Neurotransmissores/uso terapêutico , Animais , Humanos , Transmissão Sináptica/efeitos dos fármacos
8.
J Pharmacol Exp Ther ; 335(3): 762-70, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20864506

RESUMO

Triple reuptake inhibitors (TRIs) that block the dopamine transporter (DAT), norepinephrine transporter, and serotonin transporter are being developed as a new class of antidepressant that may have better efficacy and fewer side effects compared with traditional antidepressants. We describe a novel TRI, 2-[4-(4-chlorophenyl)-1-methylpiperidin-3-ylmethylsulfanyl]-1-(3-methylpiperidin-1-yl)-ethanone (JZAD-IV-22), that inhibits all three monoamine transporters with approximately equal potency in vitro. (+/-)-1-(3,4-dichlorophenyl)-3-azabicyclo-[3.1.0]hexane hydrochloride (DOV 216,303), a TRI shown to be an effective antidepressant in a clinical trial, shows reuptake inhibition similar to that of JZAD-IV-22 in vitro. Furthermore, both JZAD-IV-22 and DOV 216,303 increase levels of dopamine, norepinephrine, and serotonin in the mouse prefrontal cortex when administered by peripheral injection. JZAD-IV-22 and DOV 216,303 exhibited antidepressant-like efficacy in the mouse forced-swim and tail-suspension tests at doses that increased neurotransmitter levels. Because development of DAT inhibitors could be hindered by abuse liability, both JZAD-IV-22 and DOV 216,303 were compared in two assays that are markers of abuse potential. Both JZAD-IV-22 and DOV 216,303 partially substituted for cocaine in a drug discrimination assay in rats, and high doses of DOV 216,303 produced locomotor sensitization in mice. JZAD-IV-22 showed no evidence of sensitization at any dose tested. These results demonstrate that JZAD-IV-22 is a TRI with antidepressant-like activity similar to that of DOV 216,303. The striking feature that distinguishes the two TRIs is that locomotor sensitization, a common underlying feature of drugs of abuse, is seen with DOV 216,303 but is completely lacking in JZAD-IV-22. These findings may have implications for the potential for abuse liability in humans.


Assuntos
Antidepressivos/farmacologia , Locomoção/efeitos dos fármacos , Inibidores da Captação de Neurotransmissores/farmacologia , Piperidinas/farmacologia , Inibidores da Captação Adrenérgica/farmacologia , Inibidores da Captação Adrenérgica/uso terapêutico , Animais , Antidepressivos/uso terapêutico , Compostos Aza/efeitos adversos , Compostos Aza/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/citologia , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cocaína/farmacologia , Corpo Estriado/citologia , Depressão/prevenção & controle , Discriminação Psicológica , Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/uso terapêutico , Elevação dos Membros Posteriores , Hipotálamo/citologia , Masculino , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Inibidores da Captação de Neurotransmissores/uso terapêutico , Norepinefrina/metabolismo , Piperidinas/uso terapêutico , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Natação , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
9.
PLoS One ; 5(8): e11943, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20700523

RESUMO

BACKGROUND: Post traumatic stress disorder (PTSD) can be considered the result of a failure to recover after a traumatic experience. Here we studied possible protective and therapeutic aspects of environmental enrichment (with and without a running wheel) in Sprague Dawley rats exposed to an inescapable foot shock procedure (IFS). METHODOLOGY/PRINCIPAL FINDINGS: IFS induced long-lasting contextual and non-contextual anxiety, modeling some aspects of PTSD. Even 10 weeks after IFS the rats showed reduced locomotion in an open field. The antidepressants imipramine and escitalopram did not improve anxiogenic behavior following IFS. Also the histone deacetylase (HDAC) inhibitor sodium butyrate did not alleviate the IFS induced immobility. While environmental enrichment (EE) starting two weeks before IFS did not protect the animals from the behavioral effects of the shocks, exposure to EE either immediately after the shock or one week later induced complete recovery three weeks after IFS. In the next set of experiments a running wheel was added to the EE to enable voluntary exercise (EE/VE). This also led to reduced anxiety. Importantly, this behavioral recovery was not due to a loss of memory for the traumatic experience. The behavioral recovery correlated with an increase in cell proliferation in hippocampus, a decrease in the tissue levels of noradrenalin and increased turnover of 5-HT in prefrontal cortex and hippocampus. CONCLUSIONS/SIGNIFICANCE: This animal study shows the importance of (physical) exercise in the treatment of psychiatric diseases, including post-traumatic stress disorder and points out the possible role of EE in studying the mechanism of recovery from anxiety disorders.


Assuntos
Antidepressivos/farmacologia , Comportamento Animal , Resistência a Medicamentos , Hipocampo/patologia , Transtornos de Estresse Pós-Traumáticos/patologia , Transtornos de Estresse Pós-Traumáticos/terapia , Tonsila do Cerebelo/metabolismo , Animais , Antidepressivos/uso terapêutico , Ansiedade/complicações , Comportamento Animal/efeitos dos fármacos , Monoaminas Biogênicas/metabolismo , Proliferação de Células , Escuridão , Modelos Animais de Doenças , Hipocampo/metabolismo , Masculino , Condicionamento Físico Animal , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Resiliência Psicológica/efeitos dos fármacos , Choque/complicações , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Fatores de Tempo
10.
Eur J Pharmacol ; 633(1-3): 55-61, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20153745

RESUMO

The first line of antidepressant treatment nowadays are selective serotonin reuptake inhibitors. Although they are relatively safe to use, selective serotonin reuptake inhibitors (SSRIs) can induce severe side effects. New promising antidepressants may be the triple monoamine reuptake inhibitors, which not only enhance serotonin and norepinephrine neurotransmission, but also increase brain dopamine levels. Recently it has been shown that one of the triple reuptake inhibitors, DOV 216,303 has antidepressant-like effects in the olfactory bulbectomy (OBX) model of depression, but the alterations in monoaminergic neurotransmission in these animals are still unknown. In the present study we investigated not only the effect of acute, but also chronic treatment of DOV 216,303 in OBX rats on monoamine and metabolite levels. The main results are decreased baseline dopamine levels in the prefrontal cortex one day after OBX, while 38days after OBX no difference could be observed in monoamine levels after vehicle treatment. Treatment with DOV 216,303 leads to increased extracellular levels of serotonin and norepinephrine neurotransmission, but also increased dopamine levels in OBX animals as well as their controls. This increase could be observed after one single administration, but also after chronic treatment. However, a DOV 216,303 challenge in chronically treated animals resulted in lower monoamine concentrations than the same challenge in untreated animals. More research is needed to investigate this seemingly hyporesponsivity to chronic DOV 216,303 treatment.


Assuntos
Antidepressivos/administração & dosagem , Compostos Aza/administração & dosagem , Compostos Aza/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Bulbo Olfatório/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Animais , Antidepressivos/farmacologia , Modelos Animais de Doenças , Dopamina/metabolismo , Esquema de Medicação , Masculino , Norepinefrina/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo
11.
J Neurosci Methods ; 185(2): 257-63, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19850079

RESUMO

Recombinant adeno-associated viral vectors (AAVs) are very promising gene transfer tools for the nervous system. We have compared the efficiency of gene expression of seven AAV serotypes in young adult rats following a single injection in a major nucleus of the mid brain, the red nucleus, which is the origin of the rubrospinal tract. AAV serotypes 1-6 and 8 and a lentiviral vector (LV) were used, all encoding green fluorescent protein (GFP) under control of the cytomegalovirus (CMV) promoter. AAV vectors were titer matched at 5x10(11) genomic copies (GC)/ml and 1mul was injected into the red nucleus. The proportion of transduced neurons in the red nucleus was determined at 1 and 4 weeks post-injection. AAV1 would be the vector of choice if the aim would be to overexpress a transgene at high level for a longer period of time. AAV5 and AAV8 would be the preferred serotype if onset of expression is should be somewhat delayed. The use of lentiviral vectors should be considered when transduction of both glial cells and neurons is required. Serotypes 3 and 4 did not transduce red nucleus neurons. AAV1, AAV6 and LV would be the vectors of choice if the aim of the experiment would be to rapidly express a transgene. The current data are important for the design of experiments that aim to study the effects of transgene products on the regenerative capacity of injured red nucleus neurons.


Assuntos
Dependovirus/classificação , Dependovirus/genética , Expressão Gênica/genética , Vetores Genéticos , Núcleo Rubro/metabolismo , Transdução Genética/métodos , Animais , Feminino , Engenharia Genética , Vetores Genéticos/classificação , Proteínas de Fluorescência Verde/genética , Ratos , Ratos Endogâmicos F344 , Medula Espinal/metabolismo
12.
Vet J ; 182(3): 378-83, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19747860

RESUMO

Darwin's largest contribution to science is without doubt the mechanism of natural selection, an evolutionary game with players, strategies, and pay-offs. Game theory, which attempts to mathematically capture behaviour in situations where an organism's success in making choices depends on the choices of others, is not only important for economists, but also for biologists, veterinarians and other scientists, as it increases understanding of why individual differences exist. John Maynard Smith showed that the success of an individual's behaviour often depends on others and his Hawk-Dove model is one of the best known examples of game theory: the 'hawk' initiates aggressive behaviour (not stopping until injured or until the opponent backs down); the 'dove' retreats immediately if the opponent initiates aggressive behaviour and will not fight under any circumstances. Simultaneous hawkish behaviour has the worst pay-off for both players, whereas hawkish behaviour with a dove opponent has the best pay-off. Maynard Smith showed that natural selection will work towards an evolutionarily stable strategy that, when used by an entire population, is resistant to invasion by new mutant strategies. Thus, natural selection actually favours a particular ratio of aggressive hawkish and non-aggressive dovish behaviours in order to maintain a balance of different characteristics in the population. Natural selection has sculpted physiology and behaviour differently in hawks and doves, each in their own way so as to maintain stability of the internal environment through change--a process which is defined as allostasis. In the short term, allostasis has benefits, but in the long run it produces costs. Farm animals have been genetically selected by man for increased product quantity and quality, such as increased muscle volume, lean meat and egg shell quality, accompanied by altered steroid balance (such as more testosterone and less corticosteroids) and lower brain monoamine concentrations (serotonin and dopamine). It is hypothesised that such genetic selection results in the production of farm animals that prefer the hawk behavioural strategy. There is a growing body of evidence that hawk-like animals (such as laying hens and pigs) are more vulnerable to the development of increased impulsivity and compulsivity (stereotypies) as well as violent behaviour.


Assuntos
Alostase/fisiologia , Comportamento Animal/fisiologia , Evolução Biológica , Seleção Genética , Animais , Encéfalo/metabolismo , Comportamento Competitivo , Teoria dos Jogos , Especificidade da Espécie , Estresse Fisiológico , Estresse Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA