Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Eur J Pharmacol ; 971: 176549, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561104

RESUMO

Synthetic cannabinoid receptor agonists (SCRAs) remain one the largest classes of new psychoactive substances, and are increasingly associated with severe adverse effects and death compared to the phytocannabinoid Δ9-tetrahydrocannabinol (THC). In the attempt to circumvent the rapid emergence of novel SCRAs, several nations have implemented 'generic' legislations, or 'class-wide' bans based on common structural scaffolds. However, this has only encouraged the incorporation of new chemical entities, including distinct core and linker structures, for which there is a dearth of pharmacological data. The current study evaluated five emergent OXIZID SCRAs for affinity and functional activity at the cannabinoid CB1 receptor (CB1) in HEK 293 cells, as well as pharmacological equivalence with THC in drug discrimination in mice. All OXIZID compounds behaved as agonists in Gαi protein activation and ß-arrestin 2 translocation assays, possessing low micromolar affinity at CB1. All ligands also substituted for THC in drug discrimination, where potencies broadly correlated with in vitro activity, with the methylcyclohexane analogue BZO-CHMOXIZID being the most potent. Notably, MDA-19 (BZO-HEXOXIZID) exhibited partial efficacy in vitro, generating an activity profile most similar to that of THC, and partial substitution in vivo. Overall, the examined OXIZIDs were comparatively less potent and efficacious than previous generations of SCRAs. Further toxicological data will elucidate whether the moderate cannabimimetic activity for this series of SCRAs will translate to severe adverse health effects as seen with previous generations of SCRAs.


Assuntos
Agonistas de Receptores de Canabinoides , Processamento de Proteína Pós-Traducional , Humanos , Camundongos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Células HEK293 , Receptores de Canabinoides/metabolismo , Ligantes , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38417478

RESUMO

BACKGROUND: The cannabis plant contains several cannabinoids, and many terpenoids that give cannabis its distinctive flavoring and aroma. Δ9-Tetrahydrocannabinol (Δ9-THC) is the plant's primary psychoactive constituent. Given the abuse liability of Δ9-THC, assessment of the psychoactive effects of minor cannabinoids and other plant constituents is important, especially for compounds that may be used medicinally. This study sought to evaluate select minor cannabinoids and terpenes for Δ9-THC-like psychoactivity in mouse Δ9-THC drug discrimination and determine their binding affinities at CB1 and CB2 receptors. METHODS: Δ9-THC, cannabidiol (CBD), cannabinol (CBN), cannabichromene (CBC), cannabichromenevarin (CBCV), Δ8-tetrahydrocannabinol (Δ8-THC), (6aR,9R)-Δ10-tetrahydrocannabinol [(6aR,9R)-Δ10-THC], Δ9-tetrahydrocannabinol varin (THCV), ß-caryophyllene (BC), and ß-caryophyllene oxide (BCO) were examined. RESULTS: All minor cannabinoids showed measurable cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor binding, with CBC, CBCV, and CBD, showing the weakest CB1 receptor binding affinity. BC and BCO exhibited negligible affinity for both CB1 and CB2 receptors. In drug discrimination, only Δ8-THC fully substituted for Δ9-THC, while CBN and (6aR,9R)-Δ10-THC partially substituted for Δ9-THC. THCV and BCO did not alter the discriminative stimulus effects of Δ9-THC. CONCLUSION: In summary, only some of myriad cannabinoids and other chemicals found in the cannabis plant bind potently to the identified cannabinoid receptors. Further, only four of the compounds tested herein [Δ9-THC, Δ8-THC, (6aR,9R)-Δ10-THC, and CBN] produced Δ9-THC-like discriminative stimulus effects, suggesting they may possess cannabimimetic subjective effects. Given that the medicinal properties of phytocannabinoids and terpenoids are being investigated scientifically, delineation of their potential adverse effects, including their ability to produce Δ9-THC-like intoxication, is crucial.


Assuntos
Canabidiol , Canabinoides , Cannabis , Camundongos , Animais , Dronabinol/farmacologia , Terpenos/farmacologia , Canabinoides/farmacologia , Canabinoides/metabolismo , Cannabis/metabolismo , Canabidiol/farmacologia , Canabinol/farmacologia
3.
J Pharmacol Exp Ther ; 379(1): 1-11, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34244232

RESUMO

Compounds with novel or fentanyl-like structures continue to appear on the illicit drug market and have been responsible for fatalities, yet there are limited preclinical pharmacological data available to evaluate the risk of these compounds to public health. The purpose of the present study was to examine acetyl fentanyl, butyryl fentanyl, 3,4-dichloro-N-[[1-(dimethylamino)cyclohexyl]methyl]benzamide (AH-7921), 1-cyclohexyl-4-(1,2-diphenylethyl)piperazine (MT-45), 4-chloro-N-[1-(2-phenylethyl)-2-piperidinylidene]-benzenesulfonamide (W-15), and 4-chloro-N-[1-[2-(4-nitrophenyl)ethyl]-2-piperidinylidene]-benzenesulfonamide (W-18) for their relative potency to reference opioids and their susceptibility to naltrexone antagonism using the 55oC warm-water, tail-withdrawal assay of antinociception and a morphine drug discrimination assay in male, Sprague-Dawley rats. In the antinociception assay, groups of 8 rats per drug were placed into restraining tubes, their tails were immersed into 40o or 55oC water, and the latency for tail withdrawal was measured with a cutoff time of 15 seconds. In the drug discrimination assay, rats (n = 11) were trained to discriminate between 3.2 mg/kg morphine and saline, subcutaneously, in a two-choice, drug discrimination procedure under a fixed ratio-5 schedule of sucrose pellet delivery. Morphine, fentanyl, and four of the synthetic opioids dose dependently produced antinociception and fully substituted for morphine in the drug discrimination assay with the following rank order of potency: fentanyl > butyryl fentanyl > acetyl fentanyl > AH-7921 > MT45 > morphine. All drugs that produced antinociception or morphine-like discriminative stimulus effects were blocked by naltrexone. W-15 and W-18 did not show antinociceptive or morphine-like discriminative stimulus effects at the doses tested supporting a lack of opioid activity for these two compounds. These findings suggest that butyryl fentanyl, acetyl fentanyl, AH-7941, and MT-45 have abuse liability like other opioid agonists. SIGNIFICANCE STATEMENT: As novel psychoactive substances appear on the illicit drug market, preclinical pharmacological testing is required to assist law enforcement, medical professionals, and legal regulators with decisions about potential public health risks. In this study, four synthetic opioids, acetyl fentanyl, butyryl fentanyl, AH-7921, and MT-45 produced effects similar to fentanyl and morphine and were blocked by naltrexone. These data suggest the four synthetic opioids possess similar abuse liability risks as typical opioid agonists.


Assuntos
Analgésicos Opioides/farmacologia , Fármacos do Sistema Nervoso Central/farmacologia , Aprendizagem por Discriminação/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Psicotrópicos/farmacologia , Tempo de Reação/efeitos dos fármacos , Analgésicos Opioides/química , Animais , Fármacos do Sistema Nervoso Central/química , Aprendizagem por Discriminação/fisiologia , Relação Dose-Resposta a Droga , Masculino , Medição da Dor/métodos , Psicotrópicos/química , Ratos , Ratos Sprague-Dawley , Tempo de Reação/fisiologia
4.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-666498

RESUMO

OBJECTIVE Over 30% of all new psychoactive substances identified by the UN Office on Drugs and Crime in 2016 were synthetic cannabinoids. The recent emergence of MAM-2201 on the illicit market is troubling because this drug has no precedent in either the scientific or patent literature, and appears to be a novel compound developed specifically as a ″graymarket″ drug of abuse bystruc?turally combining the known synthetic cannabinoids JWH- 122 and AM- 2201. There is currently no published information regarding the pharmacology of MAM-2201. METHODS The present studies characterized cannabinoid-like effects of MAM-2201 in vitro (interactions with cannabinoid type 1 receptors [CB1Rs]) and in vivo (in mice and rats). RESULTS In a radioligand binding assay using [3H]CP55,940 in HEK cell membranes transfected with the CB1R, MAM-2201 (Ki=5.4 nmol·L- 1), had higher binding affinity than WIN 55,212-2 (Ki=80 nmol·L-1), and D9-THC (Ki=8.3 nmol·L-1). The Emax values for MAM-2201 and WIN 55,212-2 in an assay of agonist inhibition of forskolin-stimulated cAMP were 85% (EC50=0.45 nmol·L-1) and 95%, respectively, as compared with the D9-THC Emax of 74%. In mice, MAM-2201 (0.003-1.0 mg·kg-1, IP) produced dose-dependent cannabimimetic effects which were both more potent and more effective than those of D9-THC. MAM-2201 and D9-THC dose-dependently produced hypothermia:ED50=0.287 and 25.4 mg·kg-1, analgesia: ED50=0.125 and 29.4 mg·kg-1, and catalepsy: ED50=0.301 and 18.9 mg·kg-1 in adult male CD1 mice. Importantly, MAM-2201 also elicited convulsant effects at a dose of 1.0 mg·kg-1 in 8/8 murine subjects. In rats, MAM-2201 produced dose-dependent D9-THC-like intero?ceptive effects in subjects trained to discriminate 3.0 mg·kg-1 (IP) D9-THC from saline. CONCLUSION MAM-2201 binds CB1Rs with high affinity and agonist efficacy, and functions as a potent cannabinoid agonist in vivo across several complementary measures of cannabinoid activity in two rodent species.

5.
J Soc Biol ; 199(1): 61-77, 2005.
Artigo em Francês | MEDLINE | ID: mdl-16114265

RESUMO

Congenital myasthenic syndromes (CMS) are rare genetic diseases affecting the neuromuscular junction (NMJ) and are characterized by a dysfunction of the neurotransmission. They are heterogeneous at their pathophysiological level and can be classified in three categories according to their presynaptic, synaptic and postsynaptic origins. We report here the first case of a human neuromuscular transmission dysfunction due to mutations in the gene encoding a postsynaptic molecule, the muscle-specific receptor tyrosine kinase (MuSK). Gene analysis identified two heteroallelic mutations, a frameshift mutation (c.220insC) and a missense mutation (V790M). The muscle biopsy showed dramatic pre- and postsynaptic structural abnormalities of the neuromuscular junction and severe decrease in acetylcholine receptor (AChR) epsilon-subunit and MuSK expression. In vitro and in vivo expression experiments were performed using mutant MuSK reproducing the human mutations. The frameshift mutation led to the absence of MuSK expression. The missense mutation did not affect MuSK catalytic kinase activity but diminished expression and stability of MuSK leading to decreased agrin-dependent AChR aggregation, a critical step in the formation of the neuromuscular junction. In electroporated mouse muscle, overexpression of the missense mutation induced, within a week, a phenotype similar to the patient muscle biopsy: a severe decrease in synaptic AChR and an aberrant axonal outgrowth. These results strongly suggest that the missense mutation, in the presence of a null mutation on the other allele, is responsible for the dramatic synaptic changes observed in the patient.


Assuntos
Mutação , Síndromes Miastênicas Congênitas/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Animais , Axônios/patologia , Mutação da Fase de Leitura , Expressão Gênica , Humanos , Masculino , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Mutação de Sentido Incorreto , Síndromes Miastênicas Congênitas/enzimologia , Síndromes Miastênicas Congênitas/patologia , Junção Neuromuscular/química , Junção Neuromuscular/enzimologia , Junção Neuromuscular/patologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/análise , Receptores Colinérgicos/metabolismo , Sinapses/química , Sinapses/patologia , Sinapses/fisiologia , Transfecção
6.
Hum Mol Genet ; 13(24): 3229-40, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15496425

RESUMO

We report the first case of a human neuromuscular transmission dysfunction due to mutations in the gene encoding the muscle-specific receptor tyrosine kinase (MuSK). Gene analysis identified two heteroallelic mutations, a frameshift mutation (c.220insC) and a missense mutation (V790M). The muscle biopsy showed dramatic pre- and postsynaptic structural abnormalities of the neuromuscular junction and severe decrease in acetylcholine receptor (AChR) epsilon-subunit and MuSK expression. In vitro and in vivo expression experiments were performed using mutant MuSK reproducing the human mutations. The frameshift mutation led to the absence of MuSK expression. The missense mutation did not affect MuSK catalytic kinase activity but diminished expression and stability of MuSK leading to decreased agrin-dependent AChR aggregation, a critical step in the formation of the neuromuscular junction. In electroporated mouse muscle, overexpression of the missense mutation induced, within a week, a phenotype similar to the patient muscle biopsy: a severe decrease in synaptic AChR and an aberrant axonal outgrowth. These results strongly suggest that the missense mutation, in the presence of a null mutation on the other allele, is responsible for the dramatic synaptic changes observed in the patient.


Assuntos
Síndromes Miastênicas Congênitas/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Adulto , Análise Mutacional de DNA , Feminino , Humanos , Imuno-Histoquímica , Masculino , Músculos/metabolismo , Mutação , Síndromes Miastênicas Congênitas/metabolismo , Linhagem , Polimorfismo Genético , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/metabolismo
7.
Neuromuscul Disord ; 14(1): 24-32, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14659409

RESUMO

Congenital myasthenic syndromes are rare heterogeneous hereditary disorders, which lead to defective neuromuscular transmission resulting in fatigable muscle weakness. Post-synaptic congenital myasthenic syndromes are caused by acetylcholine receptor kinetic abnormalities or by acetylcholine receptor deficiency. Most of the congenital myasthenic syndromes with acetylcholine receptor deficiency are due to mutations in acetylcholine receptor subunit genes. Some have recently been attributed to mutations in the rapsyn gene. Here, we report the case of a 28-year-old French congenital myasthenic syndrome patient who had mild diplopia and fatigability from the age of 5 years. His muscle biopsy revealed a marked reduction in rapsyn and acetylcholine receptor at neuromuscular junctions together with a simplification of the subneural apparatus structure. In this patient, we excluded mutations in the acetylcholine receptor subunit genes and identified the homozygous N88K rapsyn mutation, which has already been shown by cell expression to impair rapsyn and acetylcholine receptor aggregation at the neuromuscular junction. The detection of the N88K mutation at the heterozygous state in five of 300 unrelated control subjects shows that this mutation is not infrequent in the healthy population. Electrophysiological measurements on biopsied intercostal muscle from this patient showed that his rapsyn mutation-induced fatigable weakness is expressed not only in a diminution in acetylcholine receptor membrane density but also in a decline of endplate potentials evoked at low frequency.


Assuntos
Proteínas Musculares/deficiência , Músculo Esquelético/fisiopatologia , Síndromes Miastênicas Congênitas/genética , Junção Neuromuscular/metabolismo , Receptores Nicotínicos/deficiência , Adulto , Biópsia , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/metabolismo , Transtornos Cromossômicos/fisiopatologia , Análise Mutacional de DNA , Regulação para Baixo/genética , Eletrofisiologia , Feminino , Frequência do Gene , Genes Recessivos/genética , Haplótipos/genética , Homozigoto , Humanos , Técnicas In Vitro , Masculino , Potenciais da Membrana/genética , Proteínas Musculares/genética , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Mutação/genética , Síndromes Miastênicas Congênitas/metabolismo , Síndromes Miastênicas Congênitas/fisiopatologia , Junção Neuromuscular/patologia , Junção Neuromuscular/ultraestrutura , Linhagem , Agregação de Receptores/genética , Receptores Nicotínicos/genética , Membranas Sinápticas/metabolismo , Membranas Sinápticas/patologia , Membranas Sinápticas/ultraestrutura , Transmissão Sináptica/genética
8.
J Biol Chem ; 277(39): 36577-84, 2002 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-12145300

RESUMO

Studies in many rhodopsin-like G-protein-coupled receptors are providing a general scheme of the structural processes underlying receptor activation. Microdomains in several receptors have been identified that appear to function as activation switches. However, evidence is emerging that these receptor proteins exist in multiple conformational states. To study the molecular control of this switching process, we investigated the function of a microdomain involving the conserved helix 7 tyrosine in the serotonin 5HT2C receptor. This tyrosine of the NPXXY motif was substituted for all naturally occurring amino acids. Three distinct constitutively active receptor phenotypes were found: moderate, high, and "locked-on" constitutive activity. In contrast to the activity of the other receptor mutants, the high basal signaling of the locked-on Y7.53N mutant was neither increased by agonists nor decreased by inverse agonists. The Y7.53F mutant was uncoupled. Computational modeling based on the rhodopsin crystal structure suggested that Y7.53 interacts with the conserved aromatic ring at position 7.60 in the recently identified helix 8 domain. This provided a basis for seeking revertant mutations to correct the defective function of the Y7.53F receptor. When the Y7.53F receptor was mutated at position 7.60, the wild-type phenotype was restored. These results suggest that Y7.53 and Y7.60 contribute to a common functional microdomain connecting helices 7 and 8 that influences the switching of the 5HT2C receptor among multiple active and inactive conformations.


Assuntos
Receptores de Serotonina/química , Tirosina/metabolismo , Motivos de Aminoácidos , Animais , Células COS , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Indóis/farmacologia , Cinética , Ligantes , Modelos Moleculares , Mutação , Fenótipo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Piridinas/farmacologia , Receptor 5-HT2C de Serotonina , Receptores de Serotonina/metabolismo , Software , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...