Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
bioRxiv ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38659940

RESUMO

During mitosis, interphase chromatin is rapidly converted into rod-shaped mitotic chromosomes. Using Hi-C, imaging, proteomics and polymer modeling, we determine how the activity and interplay between loop-extruding SMC motors accomplishes this dramatic transition. Our work reveals rules of engagement for SMC complexes that are critical for allowing cells to refold interphase chromatin into mitotic chromosomes. We find that condensin disassembles interphase chromatin loop organization by evicting or displacing extrusive cohesin. In contrast, condensin bypasses cohesive cohesins, thereby maintaining sister chromatid cohesion while separating the sisters. Studies of mitotic chromosomes formed by cohesin, condensin II and condensin I alone or in combination allow us to develop new models of mitotic chromosome conformation. In these models, loops are consecutive and not overlapping, implying that condensins do not freely pass one another but stall upon encountering each other. The dynamics of Hi-C interactions and chromosome morphology reveal that during prophase loops are extruded in vivo at ~1-3 kb/sec by condensins as they form a disordered discontinuous helical scaffold within individual chromatids.

2.
Oncogene ; 42(15): 1224-1232, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36864243

RESUMO

Activating mutations of Ras genes are often observed in cancer. The protein products of the three Ras genes are almost identical. However, for reasons that remain unclear, KRAS is far more frequently mutated than the other Ras isoforms in cancer and RASopathies. We have quantified HRAS, NRAS, KRAS4A and KRAS4B protein abundance across a large panel of cell lines and healthy tissues. We observe consistent patterns of KRAS > NRAS¼HRAS protein expression in cells that correlate with the rank order of Ras mutation frequencies in cancer. Our data provide support for the model of a sweet-spot of Ras dosage mediating isoform-specific contributions to cancer and development. We suggest that in most cases, being the most abundant Ras isoform correlates with occupying the sweet-spot and that HRAS and NRAS expression is usually insufficient to promote oncogenesis when mutated. However, our results challenge the notion that rare codons mechanistically underpin the predominance of KRAS mutant cancers. Finally, direct measurement of mutant versus wildtype KRAS protein abundance revealed a frequent imbalance that may suggest additional non-gene duplication mechanisms for optimizing oncogenic Ras dosage.


Assuntos
Neoplasias , Proteínas ras , Humanos , Proteínas ras/genética , Proteínas ras/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Mutação , Transdução de Sinais , Neoplasias/genética , Neoplasias/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Biochem J ; 479(18): 1985-1997, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36065754

RESUMO

Approximately 15% of all cancer patients harbor mutated KRAS. Direct inhibitors of KRAS have now been generated and are beginning to make progress through clinical trials. These include a suite of inhibitors targeting the KRASG12C mutation commonly found in lung cancer. We investigated emergent resistance to representative examples of different classes of Ras targeted therapies. They all exhibited rapid reactivation of Ras signaling within days of exposure and adaptive responses continued to change over long-term treatment schedules. Whilst the gene signatures were distinct for each inhibitor, they commonly involved up-regulation of upstream nodes promoting mutant and wild-type Ras activation. Experiments to reverse resistance unfortunately revealed frequent desensitization to members of a panel of anti-cancer therapeutics, suggesting that salvage approaches are unlikely to be feasible. Instead, we identified triple inhibitor combinations that resulted in more durable responses to KRAS inhibitors and that may benefit from further pre-clinical evaluation.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais
4.
Cell Death Dis ; 13(5): 436, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508606

RESUMO

The recruitment of DRP1 to mitochondrial membranes prior to fission is facilitated by the wrapping of endoplasmic reticulum (ER) membranes around the mitochondria. To investigate the complex interplay between the ER membranes and DRP1 in the context of mitochondrial structure and function, we downregulate two key ER shaping proteins, RTN4 and CLIMP-63, and demonstrate pronounced mitochondrial hyperfusion and reduced ER-mitochondria contacts, despite their differential regulation of ER architecture. Although mitochondrial recruitment of DRP1 is unaltered in cells lacking RTN4 or CLIMP-63, several aspects of mitochondrial function, such as mtDNA-encoded translation, respiratory capacity and apoptosis are significantly hampered. Further mechanistic studies reveal that CLIMP-63 is required for cristae remodeling (OPA1 proteolysis) and DRP1-mediated mitochondrial fission, whereas both RTN4 and CLIMP-63 regulate the recruitment of BAX to ER and mitochondrial membranes to enable cytochrome c release and apoptosis, thereby performing novel and distinct roles in the regulation of mitochondrial structure and function.


Assuntos
Dinaminas , Mitocôndrias , Apoptose/genética , Dinaminas/metabolismo , Metabolismo Energético , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
5.
Nanomaterials (Basel) ; 12(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215010

RESUMO

Surface engineering is a promising strategy to limit or prevent the formation of biofilms. The use of topographic cues to influence early stages of biofilm formationn has been explored, yet many fundamental questions remain unanswered. In this work, we develop a topological model supported by direct experimental evidence, which is able to explain the effect of local topography on the fate of bacterial micro-colonies of Staphylococcus spp. We demonstrate how topological memory at the single-cell level, characteristic of this genus of Gram-positive bacteria, can be exploited to influence the architecture of micro-colonies and the average number of surface anchoring points over nano-patterned surfaces, formed by vertically aligned silicon nanowire arrays that can be reliably produced on a commercial scale, providing an excellent platform to investigate the effect of topography on the early stages of Staphylococcus spp. colonisation. The surfaces are not intrinsically antimicrobial, yet they delivered a topography-based bacteriostatic effect and a significant disruption of the local morphology of micro-colonies at the surface. The insights from this work could open new avenues towards designed technologies for biofilm engineering and prevention, based on surface topography.

6.
Br J Pharmacol ; 179(12): 2844-2867, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33634485

RESUMO

In this review, we analyse the impact of oncogenic Ras mutations in mediating cancer drug resistance and the progress made in the abrogation of this resistance, through pharmacological targeting. At a physiological level, Ras is implicated in many cellular proliferation and survival pathways. However, mutations within this small GTPase can be responsible for the initiation of cancer, therapeutic resistance and failure, and ultimately disease relapse. Often termed "undruggable," Ras is notoriously difficult to target directly, due to its structure and intrinsic activity. Thus, Ras-mediated drug resistance remains a considerable pharmacological problem. However, with advances in both analytical techniques and novel drug classes, the therapeutic landscape against Ras is changing. Allele-specific, direct Ras-targeting agents have reached clinical trials for the first time, indicating there may, at last, be hope of targeting such an elusive but significant protein for better more effective cancer therapy. LINKED ARTICLES: This article is part of a themed issue on New avenues in cancer prevention and treatment (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.12/issuetoc.


Assuntos
Neoplasias , Resistência a Medicamentos , Neoplasias/tratamento farmacológico , Neoplasias/genética
7.
BMC Chem ; 15(1): 51, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521464

RESUMO

BACKGROUND: Local sequence context is known to have an impact on the mutational pattern seen in cancer. The RAS genes and a smoking carcinogen, Benzo[a]pyrene diol epoxide (BPDE), have been utilised to explore these context effects. BPDE is known to form an adduct at the guanines in a number of RAS gene sites, KRAS codons 12, 13 and 14, NRAS codon 12, and HRAS codons 12 and 14. RESULTS: Molecular modelling techniques, along with multivariate analysis, have been utilised to determine the sequence influenced differences between BPDE-adducted RAS gene sequences as well as the local distortion caused by the adducts. CONCLUSIONS: We conclude that G:C > T:A mutations at KRAS codon 12 in the tumours of lung cancer patients (who smoke), proposed to be predominantly caused by BPDE, are due to the effect of the interaction methyl group at the C5 position of the thymine base in the KRAS sequence with the BPDE carcinogen investigated causing increased distortion. We further suggest methylated cytosine would have a similar effect, showing the importance of methylation in cancer development.

8.
Clin Cancer Res ; 27(20): 5647-5659, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34380642

RESUMO

PURPOSE: B-cell receptor (BCR) signaling is critical for the pathogenesis of chronic lymphocytic leukemia (CLL), promoting both malignant cell survival and disease progression. Although vital, understanding of the wider signaling network associated with malignant BCR stimulation is poor. This is relevant with respect to potential changes in response to therapy, particularly involving kinase inhibitors. In the current study, we describe a novel high-resolution approach to investigate BCR signaling in primary CLL cells and track the influence of therapy on signaling response. EXPERIMENTAL DESIGN: A kinobead/mass spectrometry-based protocol was used to study BCR signaling in primary CLL cells. Longitudinal analysis of samples donated by clinical trial patients was used to investigate the impact of chemoimmunotherapy and ibrutinib on signaling following surface IgM engagement. Complementary Nanostring and immunoblotting analysis was used to verify our findings. RESULTS: Our protocol isolated a unique, patient-specific signature of over 30 kinases from BCR-stimulated CLL cells. This signature was associated with 13 distinct Kyoto Encyclopedia of Genes and Genomes pathways and showed significant change in cells from treatment-naïve patients compared with those from patients who had previously undergone therapy. This change was validated by longitudinal analysis of clinical trials samples where BCR-induced kinome responses in CLL cells altered between baseline and disease progression in patients failing chemoimmunotherapy and between baseline and treatment in patients taking ibrutinib. CONCLUSIONS: These data comprise the first comprehensive proteomic investigation of the BCR signaling response within CLL cells and reveal unique evidence that these cells undergo adaptive reprogramming of this signaling in response to therapy.


Assuntos
Linfócitos B/fisiologia , Leucemia Linfocítica Crônica de Células B/etiologia , Leucemia Linfocítica Crônica de Células B/patologia , Transdução de Sinais/fisiologia , Técnicas Citológicas/métodos , Humanos , Microesferas , Inibidores de Proteínas Quinases , Células Tumorais Cultivadas
9.
NPJ Biofilms Microbiomes ; 7(1): 51, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155220

RESUMO

In this work, we introduce a one-step strategy that is suitable for continuous flow manufacturing of antimicrobial PDMS materials. The process is based on the intrinsic capacity of PDMS to react to certain organic solvents, which enables the incorporation of antimicrobial actives such as salicylic acid (SA), which has been approved for use in humans within pharmaceutical products. By combining different spectroscopic and imaging techniques, we show that the surface properties of PDMS remain unaffected while high doses of the SA are loaded inside the PDMS matrix. The SA can be subsequently released under physiological conditions, delivering a strong antibacterial activity. Furthermore, encapsulation of SA inside the PDMS matrix ensured a diffusion-controlled release that was tracked by spatially resolved Raman spectroscopy, Attenuated Total Reflectance IR (ATR-IR), and UV-Vis spectroscopy. The biological activity of the new material was evaluated directly at the surface and in the planktonic state against model pathogenic bacteria, combining confocal laser scanning microscopy, electron microscopy, and cell viability assays. The results showed complete planktonic inhibition for clinically relevant strains of Staphylococcus aureus and Escherichia coli, and a reduction of up to 4 orders of magnitude for viable sessile cells, demonstrating the efficacy of these surfaces in preventing the initial stages of biofilm formation. Our approach adds a new option to existing strategies for the antimicrobial functionalisation of a wide range of products such as catheters, wound dressings and in-dwelling medical devices based on PDMS.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Dimetilpolisiloxanos , Nylons , Ácido Salicílico , Silicones , Antibacterianos/síntese química , Técnicas de Química Sintética , Dimetilpolisiloxanos/química , Liberação Controlada de Fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nylons/química , Ácido Salicílico/química , Silicones/química , Análise Espectral , Propriedades de Superfície
10.
Elife ; 102021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33998996

RESUMO

What level of Ras genes activity leads to the development of cancer?


Assuntos
Genes ras , Códon
11.
Methods Mol Biol ; 2262: 3-18, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977468

RESUMO

Analysis of cancer and RASopathy genetic databases reveals that ~19% of all cancer cases and ~4% of developmental disorders contain Ras mutations. Ras isoform and mutation variants differentially contribute to these diseases and provide an opportunity for deeper understanding of Ras function. The putative mechanisms underpinning these differences, new approaches that are being applied, and some of the key questions and challenges that remain are discussed.


Assuntos
Deficiências do Desenvolvimento/patologia , Mutação , Neoplasias/patologia , Proteínas ras/genética , Deficiências do Desenvolvimento/genética , Humanos , Neoplasias/genética
12.
Methods Mol Biol ; 2262: 65-90, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977471

RESUMO

Ras proteins and other small molecular weight GTPases are molecular switches controlling a wide range of cellular functions. High homology and functional redundancy between closely related family members are commonly observed. Antibody-based methods are commonly used to characterize their protein expression. However, these approaches are typically semi-quantitative, and the requirement to use different antibodies means that this strategy is not suited for comparative analysis of the relative expression of proteins expressed by different genes. We present a mass spectrometry-based method that precisely quantifies the protein copy number per cell of a protein of interest. We provide detailed protocols for the generation of isotopically labeled protein standards, cell/tissue processing, mass-spectrometry optimization, and subsequent utilization for the absolute quantitation of the abundance of a protein of interest. As examples, we provide instructions for the quantification of HRAS, KRAS4A, KRAS4B, NRAS, RALA, and RALB in cell line and tissue-derived samples.


Assuntos
Cromatografia de Afinidade/métodos , Espectrometria de Massas/métodos , Neoplasias/metabolismo , Proteínas ras/análise , Proteínas ras/metabolismo , Humanos , Marcação por Isótopo , Neoplasias/patologia , Processamento de Proteína Pós-Traducional , Células Tumorais Cultivadas
13.
PLoS Pathog ; 16(11): e1009016, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33216805

RESUMO

The opportunistic pathogen Streptococcus pneumoniae has dual lifestyles: one of an asymptomatic colonizer in the human nasopharynx and the other of a deadly pathogen invading sterile host compartments. The latter triggers an overwhelming inflammatory response, partly driven via pore forming activity of the cholesterol dependent cytolysin (CDC), pneumolysin. Although pneumolysin-induced inflammation drives person-to-person transmission from nasopharynx, the primary reservoir for pneumococcus, it also contributes to high mortality rates, creating a bottleneck that hampers widespread bacterial dissemination, thus acting as a double-edged sword. Serotype 1 ST306, a widespread pneumococcal clone, harbours a non-hemolytic variant of pneumolysin (Ply-NH). Performing crystal structure analysis of Ply-NH, we identified Y150H and T172I as key substitutions responsible for loss of its pore forming activity. We uncovered a novel inter-molecular cation-π interaction, governing formation of the transmembrane ß-hairpins (TMH) in the pore state of Ply, which can be extended to other CDCs. H150 in Ply-NH disrupts this interaction, while I172 provides structural rigidity to domain-3, through hydrophobic interactions, inhibiting TMH formation. Loss of pore forming activity enabled improved cellular invasion and autophagy evasion, promoting an atypical intracellular lifestyle for pneumococcus, a finding that was corroborated in in vivo infection models. Attenuation of inflammatory responses and tissue damage promoted tolerance of Ply-NH-expressing pneumococcus in the lower respiratory tract. Adoption of this altered lifestyle may be necessary for ST306 due to its limited nasopharyngeal carriage, with Ply-NH, aided partly by loss of its pore forming ability, facilitating a benign association of SPN in an alternative, intracellular host niche.


Assuntos
Adaptação Fisiológica , Inflamação/microbiologia , Mutação com Perda de Função , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia , Estreptolisinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/microbiologia , Colesterol/metabolismo , Citoplasma/microbiologia , Feminino , Humanos , Camundongos , Modelos Estruturais , Perforina/genética , Perforina/metabolismo , Alinhamento de Sequência , Streptococcus pneumoniae/genética , Estreptolisinas/genética
14.
Small ; 16(46): e2003793, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33103323

RESUMO

The generation of effective and safe nanoagents for biological applications requires their physicochemical characteristics to be tunable, and their cellular interactions to be well characterized. Here, the controlled synthesis is developed for preparing high-aspect ratio gold nanotubes (AuNTs) with tailorable wall thickness, microstructure, composition, and optical characteristics. The modulation of optical properties generates AuNTs with strong near infrared absorption. Surface modification enhances dispersibility of AuNTs in aqueous media and results in low cytotoxicity. The uptake and trafficking of these AuNTs by primary mesothelioma cells demonstrate their accumulation in a perinuclear distribution where they are confined initially in membrane-bound vesicles from which they ultimately escape to the cytosol. This represents the first study of the cellular interactions of high-aspect ratio 1D metal nanomaterials and will facilitate the rational design of plasmonic nanoconstructs as cytosolic nanoagents for potential diagnosis and therapeutic applications.


Assuntos
Mesotelioma , Nanoestruturas , Nanotubos , Citosol , Ouro , Humanos , Mesotelioma/tratamento farmacológico
15.
Nat Microbiol ; 5(7): 909-916, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32313202

RESUMO

The peritrophic matrix of blood-feeding insects is a chitinous structure that forms a protective barrier against oral pathogens and abrasive particles1. Tsetse flies transmit Trypanosoma brucei, which is the parasite that causes human sleeping sickness and is also partially responsible for animal trypanosomiasis in Sub-Saharan Africa. For this parasite to establish an infection in flies, it must first colonize the area between the peritrophic matrix and gut epithelium called the ectoperitrophic space. Although unproven, it is generally accepted that trypanosomes reach the ectoperitrophic space by penetrating the peritrophic matrix in the anterior midgut2-4. Here, we revisited this event using fluorescence- and electron-microscopy methodologies. We show that trypanosomes penetrate the ectoperitrophic space in which the newly made peritrophic matrix is synthesized by the proventriculus. Our model describes how these proventriculus-colonizing parasites can either migrate to the ectoperitrophic space or become trapped within peritrophic matrix layers to form cyst-like bodies that are passively pushed along the gut as the matrix gets remodelled. Furthermore, early proventricular colonization seems to be promoted by factors in trypanosome-infected blood that cause higher salivary gland infections and potentially increase parasite transmission.


Assuntos
Proventrículo/parasitologia , Trypanosoma brucei brucei/fisiologia , Moscas Tsé-Tsé/microbiologia , Animais , Proventrículo/ultraestrutura , Trypanosoma brucei brucei/isolamento & purificação , Moscas Tsé-Tsé/ultraestrutura
16.
Cancer Res ; 80(14): 2969-2974, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32209560

RESUMO

Ras is frequently mutated in cancer, however, there is a lack of consensus in the literature regarding the cancer mutation frequency of Ras, with quoted values varying from 10%-30%. This variability is at least in part due to the selective aggregation of data from different databases and the dominant influence of particular cancer types and particular Ras isoforms within these datasets. To provide a more definitive figure for Ras mutation frequency in cancer, we cross-referenced the data in all major publicly accessible cancer mutation databases to determine reliable mutation frequency values for each Ras isoform in all major cancer types. These percentages were then applied to current U.S. cancer incidence statistics to estimate the number of new patients each year that have Ras-mutant cancers. We find that approximately 19% of patients with cancer harbor Ras mutations, equivalent to approximately 3.4 million new cases per year worldwide. We discuss the Ras isoform and mutation-specific trends evident within the datasets that are relevant to current Ras-targeted therapies.


Assuntos
Taxa de Mutação , Mutação , Neoplasias/epidemiologia , Neoplasias/genética , Proteínas ras/genética , Humanos , Incidência , Transdução de Sinais
17.
Autophagy ; 16(7): 1314-1331, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31651224

RESUMO

Activation of trypsinogen (formation of trypsin) inside the pancreas is an early pathological event in the development of acute pancreatitis. In our previous studies we identified the activation of trypsinogen within endocytic vacuoles (EVs), cellular organelles that appear in pancreatic acinar cells treated with the inducers of acute pancreatitis. EVs are formed as a result of aberrant compound exocytosis and subsequent internalization of post-exocytic structures. These organelles can be up to 12 µm in diameter and can be actinated (i.e. coated with F-actin). Notably, EVs can undergo intracellular rupture and fusion with the plasma membrane, providing trypsin with access to cytoplasmic and extracellular targets. Unraveling the mechanisms involved in cellular processing of EVs is an interesting cell biological challenge with potential benefits for understanding acute pancreatitis. In this study we have investigated autophagy of EVs and discovered that it involves a non-canonical LC3-conjugation mechanism, reminiscent in its properties to LC3-associated phagocytosis (LAP); in both processes LC3 was recruited to single, outer organellar membranes. Trypsinogen activation peptide was observed in approximately 55% of LC3-coated EVs indicating the relevance of the described process to the early cellular events of acute pancreatitis. We also investigated relationships between actination and non-canonical autophagy of EVs and concluded that these processes represent sequential steps in the evolution of EVs. Our study expands the known roles of LAP and indicates that, in addition to its well-established functions in phagocytosis and macropinocytosis, LAP is also involved in the processing of post-exocytic organelles in exocrine secretory cells. ABBREVIATIONS: AP: acute pancreatitis; CCK: cholecystokinin; CLEM: correlative light and electron microscopy; DPI: diphenyleneiodonium; EV: endocytic vacuole; LAP: LC3-associate phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; PACs: pancreatic acinar cells; PFA: paraformaldehyde; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; Res: resveratrol; TAP: trypsinogen activation peptide; TEM: transmission electron microscopy; TLC-S: taurolithocholic acid 3-sulfate; TRD: Dextran Texas Red 3000 MW Neutral; ZGs: zymogen granules.


Assuntos
Células Acinares/metabolismo , Autofagia , Endocitose , Proteínas Associadas aos Microtúbulos/metabolismo , Pâncreas/citologia , Fagocitose , Vacúolos/metabolismo , Sal Dissódico do Ácido 1,2-Di-Hidroxibenzeno-3,5 Dissulfônico/farmacologia , Células Acinares/efeitos dos fármacos , Células Acinares/ultraestrutura , Actinas/metabolismo , Animais , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/antagonistas & inibidores , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/química , Proteínas Relacionadas à Autofagia/metabolismo , Cloroquina/farmacologia , Colecistocinina/farmacologia , Camundongos Endogâmicos C57BL , Oniocompostos/farmacologia , Fagocitose/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Domínios Proteicos , Inibidores de Proteínas Quinases/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia , Ácido Taurolitocólico/análogos & derivados , Tripsinogênio/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/efeitos dos fármacos
18.
Biochem Soc Trans ; 47(5): 1209-1222, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31506331

RESUMO

Due to cell-cycle dysregulation, many cancer cells contain more than the normal compliment of centrosomes, a state referred to as centrosome amplification (CA). CA can drive oncogenic phenotypes and indeed can cause cancer in flies and mammals. However, cells have to actively manage CA, often by centrosome clustering, in order to divide. Thus, CA is also an Achilles' Heel of cancer cells. In recent years, there have been many important studies identifying proteins required for the management of CA and it has been demonstrated that disruption of some of these proteins can cause cancer-specific inhibition of cell growth. For certain targets therapeutically relevant interventions are being investigated, for example, small molecule inhibitors, although none are yet in clinical trials. As the field is now poised to move towards clinically relevant interventions, it is opportune to summarise the key work in targeting CA thus far, with particular emphasis on recent developments where small molecule or other strategies have been proposed. We also highlight the relatively unexplored paradigm of reversing CA, and thus its oncogenic effects, for therapeutic gain.


Assuntos
Centrossomo , Neoplasias/genética , Animais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Oncogenes , Proteínas/metabolismo
19.
Cell Death Discov ; 5: 132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508245

RESUMO

Specific molecular interactions that underpin the switch between ER stress-triggered autophagy-mediated cellular repair and cellular death by apoptosis are not characterized. This study reports the unexpected interaction elicited by ER stress between the plasma membrane (PM)-localized apoptosis effector PERP and the ER Ca2+ pump SERCA2b. We show that the p53 effector PERP, which specifically induces apoptosis when expressed above a threshold level, has a heterogeneous distribution across the PM of un-stressed cells and is actively turned over by the lysosome. PERP is upregulated following sustained starvation-induced autophagy, which precedes the onset of apoptosis indicating that PERP protein levels are controlled by a lysosomal pathway that is sensitive to cellular physiological state. Furthermore, ER stress stabilizes PERP at the PM and induces its increasing co-localization with SERCA2b at ER-PM junctions. The findings highlight a novel crosstalk between pro-survival autophagy and pro-death apoptosis pathways and identify, for the first time, accumulation of an apoptosis effector to ER-PM junctions in response to ER stress.

20.
Sci Rep ; 9(1): 11188, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371812

RESUMO

The structure, ultrastructure and function of hyaline articular cartilage (HAC) and subchondral bone (SCB), and their involvement in the pathogenesis of osteoarthritis (OA) have been extensively researched. However, much less attention has been focused on the intervening tissue, articular calcified cartilage (ACC) and its role in the initiation and progression of OA. Using both light microscopy (LM) and transmission electron microscopy (TEM), a study of ACC in wild type (WT) mice, and mice with genetic osteoarthropathies (AKU) was undertaken to further understand the role played by ACC in the early stages of OA.Tibio-femoral joints were obtained from BALB/c WT and BALB/c AKU mice aged between 7 and 69 weeks. One joint was processed for routine histological analysis. The tip of the medial femoral condyle (MFC), which contained HAC, ACC, and SCB, was dissected from the contra-lateral joint and processed for TEM.In WT and AKU mice novel microanatomical structures, designated concentric lamellae, were identified surrounding chondrocytes in the ACC. The lamellae appeared to be laid down in association with advancement of the tidemark indicating they may be formed during calcification of cartilage matrix. The lamellae were associated with hypertrophic chondrocytes throughout the ACC.Novel microanatomical structures, termed concentric lamellae, which were present around hypertrophic chondrocytes in the ACC are described for the first time. Their apparent association with mineralisation, advancement of the tidemark, and greater abundance in a model of osteoarthropathy indicate their formation could be important in the pathogenesis of OA and AKU.


Assuntos
Alcaptonúria/complicações , Cartilagem Articular/ultraestrutura , Condrócitos/patologia , Osteoartrite/patologia , Alcaptonúria/genética , Alcaptonúria/patologia , Animais , Cartilagem Articular/citologia , Cartilagem Articular/patologia , Modelos Animais de Doenças , Humanos , Hipertrofia , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Osteoartrite/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...