Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 102(22): 223001, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19658860

RESUMO

We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process.

2.
Phys Rev Lett ; 100(13): 133005, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18517946

RESUMO

We investigate single-photon double ionization of H(2) by 130 to 240 eV circularly polarized photons. We find a double slitlike interference pattern in the sum momentum of both electrons in the molecular frame which survives integration over all other degrees of freedom. The difference momentum and the individual electron momentum distributions do not show such a robust interference pattern. We show that this interference results from a non-Heitler-London fraction of the H(2) ground state where both electrons are at the same atomic center.

3.
Science ; 320(5878): 920-3, 2008 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-18487190

RESUMO

Although valence electrons are clearly delocalized in molecular bonding frameworks, chemists and physicists have long debated the question of whether the core vacancy created in a homonuclear diatomic molecule by absorption of a single x-ray photon is localized on one atom or delocalized over both. We have been able to clarify this question with an experiment that uses Auger electron angular emission patterns from molecular nitrogen after inner-shell ionization as an ultrafast probe of hole localization. The experiment, along with the accompanying theory, shows that observation of symmetry breaking (localization) or preservation (delocalization) depends on how the quantum entangled Bell state created by Auger decay is detected by the measurement.

4.
Science ; 318(5852): 949-52, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17991857

RESUMO

The wave nature of particles is rarely observed, in part because of their very short de Broglie wavelengths in most situations. However, even with wavelengths close to the size of their surroundings, the particles couple to their environment (for example, by gravity, Coulomb interaction, or thermal radiation). These couplings shift the wave phases, often in an uncontrolled way, and the resulting decoherence, or loss of phase integrity, is thought to be a main cause of the transition from quantum to classical behavior. How much interaction is needed to induce this transition? Here we show that a photoelectron and two protons form a minimum particle/slit system and that a single additional electron constitutes a minimum environment. Interference fringes observed in the angular distribution of a single electron are lost through its Coulomb interaction with a second electron, though the correlated momenta of the entangled electron pair continue to exhibit quantum interference.

5.
Science ; 315(5812): 629-33, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17272717

RESUMO

H2, the smallest and most abundant molecule in the universe, has a perfectly symmetric ground state. What does it take to break this symmetry? We found that the inversion symmetry can be broken by absorption of a linearly polarized photon, which itself has inversion symmetry. In particular, the emission of a photoelectron with subsequent dissociation of the remaining H+2 fragment shows no symmetry with respect to the ionic H+ and neutral H atomic fragments. This lack of symmetry results from the entanglement between symmetric and antisymmetric H+2 states that is caused by autoionization. The mechanisms behind this symmetry breaking are general for all molecules.

6.
Phys Rev Lett ; 93(8): 083002, 2004 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-15447180

RESUMO

Diffraction of a low energy (<4 eV) carbon-K-photoelectron wave that is created inside a CO molecule by absorption of a circularly polarized photon is investigated. The measurements resolve the vibrational states of the K-shell ionized CO+ molecule and display the photoelectron diffraction patterns in the molecular frame. These show significant variation for the different vibrational states. This effect is stronger than predicted by state-of-the-art theory. As this study is performed close to C-K-threshold and, therefore, far below the molecule's sigma-shape resonance, this surprisingly strong effect is not related to that resonance phenomenon.

7.
Nature ; 431(7007): 437-40, 2004 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-15386008

RESUMO

All properties of molecules--from binding and excitation energies to their geometry--are determined by the highly correlated initial-state wavefunction of the electrons and nuclei. Details of these correlations can be revealed by studying the break-up of these systems into their constituents. The fragmentation might be initiated by the absorption of a single photon, by collision with a charged particle or by exposure to a strong laser pulse: if the interaction causing the excitation is sufficiently understood, the fragmentation process can then be used as a tool to investigate the bound initial state. The interaction and resulting fragment motions therefore pose formidable challenges to quantum theory. Here we report the coincident measurement of the momenta of both nuclei and both electrons from the single-photon-induced fragmentation of the deuterium molecule. The results reveal that the correlated motion of the electrons is strongly dependent on the inter-nuclear separation in the molecular ground state at the instant of photon absorption.

8.
Phys Rev Lett ; 92(16): 163001, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-15169223

RESUMO

We report the first kinematically complete study of the four-body fragmentation of the D2 molecule following absorption of a single photon. For equal energy sharing of the two electrons and a photon energy of 75.5 eV, we observed the relaxation of one of the selection rules valid for He photo-double-ionization and a strong dependence of the electron angular distribution on the orientation of the molecular axis. This effect is reproduced by a model in which a pair of photoionization amplitudes is introduced for the light polarization parallel and perpendicular to the molecular axis.

9.
Phys Rev Lett ; 90(23): 233002, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12857254

RESUMO

We have used complete correlated momentum mapping of the photoelectron and heavy ion products from the dissociation of the di-cation of acetylene, induced by photoionizing the carbon K shell of one of the atoms, to map out the angular correlation between the electron and the axis of the target molecule. The (quasi-) symmetric decay is found to proceed through both acetylene and vinylidene configurations. By using the strongly peaked photoelectron emission to "start a clock," an upper limit of 60 fs is placed on the isomerization time from the acetylene to the vinylidene configuration.

10.
Phys Rev Lett ; 90(15): 153003, 2003 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-12732032

RESUMO

We have measured the angular distribution of carbon K-Auger electrons from fixed in space, core-ionized, CO molecules in coincidence with the kinetic energy release of the C+ and O+ fragments. We find a very narrow ejection of Auger electrons in the direction of the oxygen and an oscillatory diffraction pattern. Even for similar electron energies, the angular distribution strongly depends on the symmetry of the final state.

11.
Phys Rev Lett ; 89(3): 033004, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12144390

RESUMO

We have measured fully differential cross sections for photo double ionization of helium 450 eV above the threshold. We have found an extremely asymmetric energy sharing between the photoelectrons and an angular asymmetry parameter beta approximately 2 and beta approximately 0 for the fast and slow electrons, respectively. The electron angular distributions show a dominance of the shakeoff for 2 eV electrons and clear evidence of an inelastic electron-electron scattering at an electron energy of 30 eV. The data are in excellent agreement with convergent close-coupling calculations.

12.
Phys Rev Lett ; 88(7): 073002, 2002 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-11863892

RESUMO

We have measured the angular distributions of 1s photoelectrons excited by circularly and linearly polarized light from fixed-in-space CO and N2 molecules, in the vicinity of their shape resonances. A strong circular dichroism, i.e., a strong dependence on the sense of rotation of the polarization vector of the photons, is found for both molecules. State-of-the-art one-electron multiple scattering and partially correlated random phase approximation calculations are in good agreement with many, but not all, aspects of the experimental data.

13.
Phys Rev Lett ; 87(1): 013002, 2001 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-11461463

RESUMO

We demonstrate the use of a multiparticle coincidence technique to image the diffraction of an electron wave whose source is placed at a specific site in a free molecule. Core-level photoelectrons are used to illuminate the molecule from within. By measuring the vector momenta of two molecular fragments and the photoelectron, a richly structured electron diffraction pattern is obtained in a body-fixed frame of the randomly oriented molecule in the gas phase. We illustrate this technique for CO, creating a photoelectron from the C(1s) shell and scanning its energy from zero to 30 eV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...