Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(13): 4969-4980, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38550701

RESUMO

The selective α,ß-desaturation of cyclic carbonyl compounds, which are found in the core of many steroid and bioactive molecules, using green chemistry is highly desirable. To achieve this task, we have for the first time described and solved the de novo structure of a member of the cyclohexanone dehydrogenase class of enzymes. The breadth of substrate specificity was investigated by assaying the cyclohexanone dehydrogenase, from Alicycliphilus denitrificans, against several cyclic ketones, lactones and lactams. To investigate substrate binding, a catalytic variant, Y195F, was generated and used to obtain a crystallographic complex with the natural substrate, cyclohexanone. This revealed substrate-active site interactions, as well as the proximity of the cofactor, flavin adenine dinucleotide, and enabled us to propose a mechanistic function to key amino acids. We then used molecular dynamic simulations to guide design to add functionality to the cyclohexanone dehydrogenase enzyme. The resulting W113A variant had overall improved enzyme activity and substrate scope, i.e., accepting the bulkier carbonyl compound, dihydrocoumarin. Structural analysis of the W113A variant revealed a broader, more open active site, which helped explain the modified substrate specificity. This work paves the way for future bespoke regioselective α,ß-desaturation in the synthesis of important bioactive molecules via rational enzyme engineering.

2.
Eur J Med Chem ; 261: 115853, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37857144

RESUMO

Teixobactin is a cyclic undecadepsipeptide that has shown excellent potency against multidrug-resistant pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). In this article, we present the design, synthesis, and antibacterial evaluations of 16 different teixobactin analogues. These simplified analogues contain commercially available hydrophobic, non-proteogenic amino acid residues instead of synthetically challenging expensive L-allo-enduracididine amino acid residue at position 10 together with different combinations of arginines at positions 3, 4 and 9. The new teixobactin analogues showed potent antibacterial activity against a broad panel of Gram-positive bacteria, including MRSA and VRE strains. Our work also presents the first demonstration of the potent antibiofilm activity of teixobactin analogoues against Staphylococcus species associated with serious chronic infections. Our results suggest that the use of hydrophobic, non-proteogenic amino acids at position 10 in combination with arginine at positions 3, 4 and 9 holds the key to synthesising a new generation of highly potent teixobactin analogues to tackle resistant bacterial infections and biofilms.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Enterococos Resistentes à Vancomicina , Relação Estrutura-Atividade , Aminoácidos/farmacologia , Antibacterianos/química , Biofilmes , Testes de Sensibilidade Microbiana
3.
J Med Chem ; 61(5): 2009-2017, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29363971

RESUMO

The cyclic depsipeptide, teixobactin, kills a number of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), and Mycobacterium tuberculosis without detectable resistance. To date, teixobactin is the only molecule in its class that has shown in vivo antibacterial efficacy. In this work, we designed and synthesized 10 new in vivo ready teixobactin analogues. These analogues showed highly potent antibacterial activities against Staphylococcus aureus, MRSA, and vancomycin-resistant enterococci (VRE) in vitro. One analogue, d-Arg4-Leu10-teixobactin, 2, was found to be noncytotoxic in vitro and in vivo. Moreover, topical instillation of peptide 2 in a mouse model of S. aureus keratitis decreased the bacterial bioburden (>99.0% reduction) and corneal edema significantly as compared to untreated mouse corneas. Collectively, our results have established the high therapeutic potential of a teixobactin analogue in attenuating bacterial infections and associated severities in vivo.


Assuntos
Depsipeptídeos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Animais , Depsipeptídeos/síntese química , Desenho de Fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Camundongos , Infecções Estafilocócicas/tratamento farmacológico , Resistência a Vancomicina
4.
Chem Commun (Camb) ; 53(55): 7788-7791, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28650495

RESUMO

The recently discovered cyclic depsipeptide, teixobactin, is a highly potent antibiotic against multi-drug resistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and Mycobaterium tuberculosis. It comprises of 4 D amino acids and a rare l-allo-enduracididine amino acid. The synthesis of a properly protected l-allo-enduracididine amino acid and its incorporation into teixobactin is time consuming, synthetically challenging and low yielding and is therefore a major bottleneck in the development of potent analogues of teixobactin. In this article, we have synthesised 8 analogues of teixobactin using commercially available building blocks by replacing the l-allo-enduracididine amino acid with its isosteres. Furthermore, we have tested all the compounds against a panel of Gram positive bacteria including MRSA and explained the observed trend in biological activity. Although all the analogues were active, three analogues from this work, showed very promising activity against MRSA (MIC 1 µg mL-1). We can conclude that amino acids which are the closest isosteres of l-allo-enduracididine are the key to synthesising simplified potent analogues of teixobactin using rapid syntheses and improved yields.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pirrolidinas/química , Pirrolidinas/farmacologia , Antibacterianos/química , Depsipeptídeos/síntese química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
5.
Structure ; 25(7): 1100-1110.e5, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28648610

RESUMO

Heparan sulfate proteoglycans activate the matrix metalloproteinase-7 zymogen (proMMP-7) and recruit it in order to shed proteins from cell surfaces. This occurs in uterine and mammary epithelia, bacterial killing, lung healing, and tumor cell signaling. Basic tracks on proMMP-7 recognize polyanionic heparin, according to nuclear magnetic resonance and mutations disruptive of maturation. Contacts and proximity measurements guided docking of a heparin octasaccharide to proMMP-7. The reducing end fits into a basic pocket in the pro-domain while the chain continues toward the catalytic domain. Another oligosaccharide traverses a basic swath remote on the catalytic domain and inserts its reducing end into a slot formed with the basic C terminus. This latter association appears to support allosteric acceleration of proteolysis. The modes of binding account for extended, heterogeneous assemblies of proMMP-7 with heparinoids during maturation and for bridging to pro-α-defensins and proteoglycans. These associations support proteolytic release of activities at epithelial cell surfaces.


Assuntos
Precursores Enzimáticos/química , Heparina/metabolismo , Metaloendopeptidases/química , Simulação de Acoplamento Molecular , Domínio Catalítico , Precursores Enzimáticos/metabolismo , Heparina/química , Humanos , Metaloendopeptidases/metabolismo , Ligação Proteica , Proteólise , Eletricidade Estática
6.
Chem Commun (Camb) ; 53(12): 2016-2019, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28124045

RESUMO

The discovery of the highly potent antibiotic teixobactin, which kills the bacteria without any detectable resistance, has stimulated interest in its structure-activity relationship. However, a molecular structure-activity relationship has not been established so far for teixobactin. Moreover, the importance of the individual amino acids in terms of their l/d configuration and their contribution to the molecular structure and biological activity are still unknown. For the first time, we have defined the molecular structure of seven teixobactin analogues through the variation of the d/l configuration of its key residues, namely N-Me-d-Phe, d-Gln, d-allo-Ile and d-Thr. Furthermore, we have established the role of the individual d amino acids and correlated this with the molecular structure and biological activity. Through extensive NMR and structural calculations, including molecular dynamics simulations, we have revealed the residues for maintaining a reasonably unstructured teixobactin which is imperative for biological activity.


Assuntos
Antibacterianos/farmacologia , Depsipeptídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Depsipeptídeos/química , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade
7.
Chem Sci ; 8(12): 8183-8192, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29568465

RESUMO

Teixobactin is a highly promising antibacterial depsipeptide consisting of four d-amino acids and a rare l-allo-enduracididine amino acid. l-allo-Enduracididine is reported to be important for the highly potent antibacterial activity of teixobactin. However, it is also a key limiting factor in the development of potent teixobactin analogues due to several synthetic challenges such as it is not commercially available, requires a multistep synthesis, long and repetitive couplings (16-30 hours). Due to all these challenges, the total synthesis of teixobactin is laborious and low yielding (3.3%). In this work, we have identified a unique design and developed a rapid synthesis (10 min µwave assisted coupling per amino acid, 30 min cyclisation) of several highly potent analogues of teixobactin with yields of 10-24% by replacing the l-allo-enduracididine with commercially available non-polar residues such as leucine and isoleucine. Most importantly, the Leu10-teixobactin and Ile10-teixobactin analogues have shown highly potent antibacterial activity against a broader panel of MRSA and Enterococcus faecalis (VRE). Furthermore, these synthetic analogues displayed identical antibacterial activity to natural teixobactin (MIC 0.25 µg mL-1) against MRSA ATCC 33591 despite their simpler design and ease of synthesis. We have confirmed lipid II binding and measured the binding affinities of individual amino acid residues of Ala10-teixobactin towards geranyl pyrophosphate by NMR to understand the nature and strength of binding interactions. Contrary to current understanding, we have shown that a cationic amino acid at position 10 is not essential for target (lipid II) binding and potent antibacterial activity of teixobactin. We thus provide strong evidence contrary to the many assumptions made about the mechanism of action of this exciting new antibiotic. Introduction of a non-cationic residue at position 10 allows for tremendous diversification in the design and synthesis of highly potent teixobactin analogues and lays the foundations for the development of teixobactin analogues as new drug-like molecules to target MRSA and Mycobacterium tuberculosis.

8.
Chem Commun (Camb) ; 52(36): 6060-3, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-26984316

RESUMO

The discovery of the new antibiotic teixobactin has been timely in the race for unearthing novel antibiotics wherein the emergence of drug resistant bacteria poses a serious threat worldwide. Herein, we present the total syntheses and biological activities of two teixobactin analogues. This approach is simple, efficient and has several advantages: it uses commercially available building blocks (except AllocHN-d-Thr-OH), has a single purification step and a good recovery (22%). By using this approach we have synthesised two teixobactin analogues and established that the d-amino acids are critical for the antimicrobial activity of these analogues. With continuing high expectations from teixobactin, this work can be regarded as a stepping stone towards an in depth study of teixobactin, its analogues and the quest for synthesising similar molecules.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Depsipeptídeos/síntese química , Depsipeptídeos/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Relação Estrutura-Atividade
9.
J Biol Chem ; 291(15): 7888-901, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26887942

RESUMO

Collagenolysis is essential in extracellular matrix homeostasis, but its structural basis has long been shrouded in mystery. We have developed a novel docking strategy guided by paramagnetic NMR that positions a triple-helical collagen V mimic (synthesized with nitroxide spin labels) in the active site of the catalytic domain of matrix metalloproteinase-12 (MMP-12 or macrophage metalloelastase) primed for catalysis. The collagenolytically productive complex forms by utilizing seven distinct subsites that traverse the entire length of the active site. These subsites bury ∼1,080 Å(2)of surface area, over half of which is contributed by the trailing strand of the synthetic collagen V mimic, which also appears to ligate the catalytic zinc through the glycine carbonyl oxygen of its scissile G∼VV triplet. Notably, the middle strand also occupies the full length of the active site where it contributes extensive interfacial contacts with five subsites. This work identifies, for the first time, the productive and specific interactions of a collagen triple helix with an MMP catalytic site. The results uniquely demonstrate that the active site of the MMPs is wide enough to accommodate two strands from collagen triple helices. Paramagnetic relaxation enhancements also reveal an extensive array of encounter complexes that form over a large part of the catalytic domain. These transient complexes could possibly facilitate the formation of collagenolytically active complexes via directional Brownian tumbling.


Assuntos
Colágeno Tipo V/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Colágeno Tipo V/química , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Metaloproteinase 12 da Matriz/química , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Mapas de Interação de Proteínas , Estrutura Secundária de Proteína
10.
Structure ; 23(11): 2099-110, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26439767

RESUMO

Matrix metalloproteinase-7 (MMP-7) sheds signaling proteins from cell surfaces to activate bacterial killing, wound healing, and tumorigenesis. The mechanism targeting soluble MMP-7 to membranes has been investigated. Nuclear magnetic resonance structures of the zymogen, free and bound to membrane mimics without and with anionic lipid, reveal peripheral binding to bilayers through paramagnetic relaxation enhancements. Addition of cholesterol sulfate partially embeds the protease in the bilayer, restricts its diffusion, and tips the active site away from the bilayer. Its insertion of hydrophobic residues organizes the lipids, pushing the head groups and sterol sulfate outward toward the enzyme's positive charge on the periphery of the enlarged interface. Fluorescence probing demonstrates a similar mode of binding to plasma membranes and internalized vesicles of colon cancer cells. Binding of bilayered micelles induces allosteric activation and conformational change in the auto-inhibitory peptide and the adjacent scissile site, illustrating a potential intermediate in the activation of the zymogen.


Assuntos
Membrana Celular/metabolismo , Metaloproteinase 7 da Matriz/química , Regulação Alostérica , Sequência de Aminoácidos , Linhagem Celular Tumoral , Colesterol/química , Colesterol/metabolismo , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Eletricidade Estática , Vesículas Transportadoras/metabolismo
11.
Nat Commun ; 5: 5552, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25412686

RESUMO

Matrix metalloproteinases (MMPs) regulate tissue remodelling, inflammation and disease progression. Some soluble MMPs are inexplicably active near cell surfaces. Here we demonstrate the binding of MMP-12 directly to bilayers and cellular membranes using paramagnetic NMR and fluorescence. Opposing sides of the catalytic domain engage spin-labelled membrane mimics. Loops project from the ß-sheet interface to contact the phospholipid bilayer with basic and hydrophobic residues. The distal membrane interface comprises loops on the other side of the catalytic cleft. Both interfaces mediate MMP-12 association with vesicles and cell membranes. MMP-12 binds plasma membranes and is internalized to hydrophobic perinuclear features, the nuclear membrane and inside the nucleus within minutes. While binding of TIMP-2 to MMP-12 hinders membrane interactions beside the active site, TIMP-2-inhibited MMP-12 binds vesicles and cells, suggesting compensatory rotation of its membrane approaches. MMP-12 association with diverse cell membranes may target its activities to modulate innate immune responses and inflammation.


Assuntos
Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Células HeLa , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Macrófagos/imunologia , Camundongos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fosfolipídeos/metabolismo , Ligação Proteica , Marcadores de Spin , Eletricidade Estática
12.
Biomol NMR Assign ; 8(2): 329-33, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23893395

RESUMO

A domain needed for the catalytic efficiency of an enzyme model of simple processivity and domain-domain interactions has been characterized by NMR. This domain 4 from phosphomannomutase/phosphoglucomutase (PMM/PGM) closes upon glucose phosphate and mannose phosphate ligands in the active site, and can modestly reconstitute activity of enzyme truncated to domains 1-3. This enzyme supports biosynthesis of the saccharide-derived virulence factors (rhamnolipids, lipopolysaccharides, and alginate) of the opportunistic bacterial pathogen Pseudomonas aeruginosa. (1)H, (13)C, and (15)N NMR chemical shift assignments of domain 4 of PMM/PGM suggest preservation and independence of its structure when separated from domains 1-3. The face of domain 4 that packs with domain 3 is perturbed in NMR spectra without disrupting this fold. The perturbed residues overlap both the most highly coevolved positions in the interface and residues lining a cavity at the domain interface.


Assuntos
Evolução Molecular , Ressonância Magnética Nuclear Biomolecular , Fosfoglucomutase/química , Fosfoglucomutase/metabolismo , Fosfotransferases (Fosfomutases)/química , Fosfotransferases (Fosfomutases)/metabolismo , Pseudomonas aeruginosa/enzimologia , Modelos Moleculares , Estrutura Terciária de Proteína
13.
J Biol Chem ; 286(52): 45073-82, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22030392

RESUMO

Matrix metalloproteinase-1 (MMP-1) is an instigator of collagenolysis, the catabolism of triple helical collagen. Previous studies have implicated its hemopexin (HPX) domain in binding and possibly destabilizing the collagen substrate in preparation for hydrolysis of the polypeptide backbone by the catalytic (CAT) domain. Here, we use biophysical methods to study the complex formed between the MMP-1 HPX domain and a synthetic triple helical peptide (THP) that encompasses the MMP-1 cleavage site of the collagen α1(I) chain. The two components interact with 1:1 stoichiometry and micromolar affinity via a binding site within blades 1 and 2 of the four-bladed HPX domain propeller. Subsequent site-directed mutagenesis and assay implicates blade 1 residues Phe(301), Val(319), and Asp(338) in collagen binding. Intriguingly, Phe(301) is partially masked by the CAT domain in the crystal structure of full-length MMP-1 implying that transient separation of the domains is important in collagen recognition. However, mutation of this residue in the intact enzyme disrupts the CAT-HPX interface resulting in a drastic decrease in binding activity. Thus, a balanced equilibrium between these compact and dislocated states may be an essential feature of MMP-1 collagenase activity.


Assuntos
Metaloproteinase 1 da Matriz/química , Sítios de Ligação/fisiologia , Colágeno/química , Colágeno/genética , Colágeno/metabolismo , Cristalografia por Raios X , Humanos , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
14.
J Am Chem Soc ; 133(25): 9696-9, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21612236

RESUMO

Synthetic peptides that specifically bind nuclear hormone receptors offer an alternative approach to small molecules for the modulation of receptor signaling and subsequent gene expression. Here we describe the design of a series of novel stapled peptides that bind the coactivator peptide site of estrogen receptors. Using a number of biophysical techniques, including crystal structure analysis of receptor-stapled peptide complexes, we describe in detail the molecular interactions and demonstrate that all-hydrocarbon staples modulate molecular recognition events. The findings have implications for the design of stapled peptides in general.


Assuntos
Desenho de Fármacos , Peptídeos/síntese química , Receptores de Estrogênio/metabolismo , Cristalografia por Raios X , Humanos , Peptídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Receptores de Estrogênio/química
15.
J Immunol ; 184(1): 73-83, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19949070

RESUMO

Tapasin edits the peptide repertoire presented to CD8(+) T cells by favoring loading of slow off-rate peptides on MHC I molecules. To investigate the role of tapasin on T cell immunodominance we used poxvirus viral vectors expressing a polytope of lymphocytic choriomeningitis virus epitopes with different off-rates. In tapasin-deficient mice, responses to subdominant fast off-rate peptides were clearly favored. This alteration of the CD8(+) T cell hierarchy was a consequence of tapasin editing and not a consequence of the alteration of the T cell repertoire in tapasin-deficient mice, because bone marrow chimeric mice (wild-type recipients reconstituted with tapasin knockout bone marrow) showed the same hierarchy as the tapasin knockout mice. Tapasin editing is therefore a contributing factor to the phenomenon of immunodominance. Although tapasin knockout cells have low MHC I surface expression, Ag presentation was efficient and resulted in strong T cell responses involving T cells with increased functional avidity. Therefore, in this model, tapasin-deficient mice do not have a reduced but rather have an altered immune response.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Epitopos Imunodominantes/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas de Membrana Transportadoras/imunologia , Animais , Apresentação de Antígeno/imunologia , Cromatografia Líquida de Alta Pressão , Antígenos de Histocompatibilidade Classe I/imunologia , Ativação Linfocitária/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Knockout
16.
J Mol Biol ; 380(1): 206-22, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18508078

RESUMO

The widespread and functionally varied members of the ribonuclease A (RNase A) superfamily provide an excellent opportunity to study evolutionary forces at work on a conserved protein scaffold. Representatives from the zebrafish are of particular interest as the evolutionary distance from non-ichthyic homologues is large. We conducted an exhaustive survey of available zebrafish DNA sequences and found significant polymorphism among its four known homologues. In an extension of previous nomenclature, the variants have been named RNases ZF-1a-c,-2a-d,-3a-e and-4. We present the first X-ray crystal structures of zebrafish ribonucleases, RNases ZF-1a and-3e at 1.35-and 1.85 A resolution, respectively. Structure-based clustering with ten other ribonuclease structures indicates greatest similarity to mammalian angiogenins and amphibian ribonucleases, and supports the view that all present-day ribonucleases evolved from a progenitor with three disulphide bonds. In their details, the two structures are intriguing melting-pots of features present in ribonucleases from other vertebrate classes. Whereas in RNase ZF-1a the active site is obstructed by the C-terminal segment (as observed in angiogenin), in RNase ZF-3e the same region is open (as observed in more catalytically efficient homologues). The progenitor of present-day ribonucleases is more likely to have had an obstructive C terminus, and the relatively high similarity (late divergence) of RNases ZF-1 and-3 infers that the active site unblocking event has happened independently in different vertebrate lineages.


Assuntos
Evolução Molecular , Polimorfismo Genético , Ribonuclease Pancreático/química , Ribonuclease Pancreático/genética , Homologia de Sequência de Aminoácidos , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Filogenia , Estrutura Secundária de Proteína , RNA de Transferência/metabolismo , Alinhamento de Sequência
17.
Biochemistry ; 46(42): 11810-8, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17900154

RESUMO

Human angiogenin (ANG), the first member of the angiogenin family (from the pancreatic ribonuclease A superfamily) to be identified, is an angiogenic factor that induces neovascularization. It has received much attention due to its involvement in the growth of tumors and its elevated expression level in pancreatic and several other cancers. Recently the biological role of ANG has been shown to extend to the nervous system. Mutations in ANG have been linked with familial as well as sporadic forms of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder characterized by selective destruction of motor neurons. Furthermore, mouse angiogenin-1 has been shown to be expressed in the developing nervous system and during the neuronal differentiation of pluripotent stem cells. We have now characterized the seven variants of ANG reported in ALS patients with respect to the known biochemical properties of ANG and further studied the biological properties of three of these variants. Our results show that the ribonucleolytic activity of six of the seven ANG-ALS implicated variants is significantly reduced or lost and some variants also show altered thermal stability. We report a significant reduction in the cell proliferative and angiogenic activities of the three variants that we chose to investigate further. Our studies on the biochemical and structural features of these ANG variants now form the basis for further investigations to determine their role(s) in ALS.


Assuntos
Esclerose Lateral Amiotrófica/etiologia , Variação Genética , Mutação , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Estabilidade Enzimática/genética , Formazans/metabolismo , Humanos , Melanoma/metabolismo , Modelos Moleculares , Peso Molecular , Desnaturação Proteica , Engenharia de Proteínas , Renaturação Proteica , Ribonuclease Pancreático/análise , Ribonuclease Pancreático/química , Ribonuclease Pancreático/isolamento & purificação , Temperatura , Sais de Tetrazólio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...