Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 56(3): B14-B17, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-28157858

RESUMO

Experimental nonlinear absorption data obtained using the open-aperture Z-scan technique are presented for 2, 3, 7, 8, 12, 17, 18-octaethyl-21H, 23H-porphine ruthenium (II) carbonyl in tetrahydrofuran. These data show saturation of nonlinear absorption dominating at low fluence but being overcome by induced absorption (reverse saturable absorption) at high fluence. Large-angle scattering measurements demonstrate that the induced absorption is real and not merely the result of scattering of light outside of the collection aperture of the detector by scattering centers induced at high fluence. A possible mechanism based on a four-band effective rate equation model is proposed. The model is used to accurately predict the results of Z scans taken at different pulse energies and to extract values for excited-state lifetimes and absorption cross sections from the experimental data.

2.
Opt Lett ; 40(2): 186-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25679840

RESUMO

Femtosecond transient difference absorption (fs TA) measurements, together with a series of open-aperture Z scans at picosecond and nanosecond pulse widths and a variety of pulse energies, were performed on a 1,10-phenanthrolinyl iridium(III) complex bearing ligands containing a benzothiazolylfluorenyl motif. An analysis of decay data from the fs TA experiment yields a value of 1.24±0.26 ns for the singlet excited-state lifetime τ(S) of the complex. By fitting the Z scans to a five-level dynamic model incorporating the independently measured value of τ(S) and previously reported values of the complex's triplet quantum yield (0.13) and triplet excited-state lifetime (230 ns), we obtain values of 3.5×10(-17) cm(2) (singlet) and 5.0×10(-16) cm(2) (triplet) for the excited-state absorption cross-sections of the complex in toluene solution at 532 nm; the latter value represents one of the largest triplet excited-state absorption cross-sections ever reported at this wavelength. The ratio of the triplet excited-state cross-section to the ground-state absorption cross-section exceeds 3800.

3.
ACS Appl Mater Interfaces ; 5(3): 565-72, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23273050

RESUMO

Pt(II) complexes bearing 4-(7-(benzothiazol-2'-yl)-9,9-diethylfluoren-2-yl)-2,2':6',2″-terpyridine or 4-(7-(benzothiazol-2'-yl)-9,9-diethylfluoren-2-yl)ethynyl-2,2':6',2″-terpyridine ligand exhibit strong reverse saturable absorption in the visible spectral region and large two-photon initiated excited-state absorption in the near-IR region. They are promising broadband nonlinear absorbing materials from the visible to the near-IR region. The extended π-conjugation in complex 2 that has a C≡C linker between the terpyridine ligand and the 4-(7-(benzothiazol-2'-yl)-9,9-diethylfluoren-2-yl) substituent significantly increases the two-photon absorption cross sections (σ(2)), making it among the strongest of two-photon absorbing Pt(II) complexes.

4.
Chemistry ; 18(15): 4593-606, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22407839

RESUMO

A platinum complex with the 6-(7-benzothiazol-2'-yl-9,9-diethyl-9H-fluoren-2-yl)-2,2'-bipyridinyl ligand (1) was synthesized and the crystal structure was determined. UV/Vis absorption, emission, and transient difference absorption of 1 were systematically investigated. DFT calculations were carried out on 1 to characterize the electronic ground state and aid in the understanding of the nature of low-lying excited electronic states. Complex 1 exhibits intense structured (1)π-π* absorption at λ(abs)<440 nm, and a broad, moderate (1)MLCT/(1)LLCT transition at 440-520 nm in CH(2)Cl(2) solution. A structured (3)π-π*/(3)MLCT emission at about 590 nm was observed at room temperature and at 77 K. Complex 1 exhibits both singlet and triplet excited-state absorption from 450 nm to 750 nm, which are tentatively attributed to the (1)π-π* and (3)π-π* excited states of the 6-(7-benzothiazol-2'-yl-9,9-diethyl-9H-fluoren-2-yl)-2,2'-bipyridine ligand, respectively. Z-scan experiments were conducted by using ns and ps pulses at 532 nm, and ps pulses at a variety of visible and near-IR wavelengths. The experimental data were fitted by a five-level model by using the excited-state parameters obtained from the photophysical study to deduce the effective singlet and triplet excited-state absorption cross sections in the visible spectral region and the effective two-photon absorption cross sections in the near-IR region. Our results demonstrate that 1 possesses large ratios of excited-state absorption cross sections relative to that of the ground-state in the visible spectral region; this results in a remarkable degree of reverse saturable absorption from 1 in CH(2)Cl(2) solution illuminated by ns laser pulses at 532 nm. The two-photon absorption cross sections in the near-IR region for 1 are among the largest values reported for platinum complexes. Therefore, 1 is an excellent, broadband, nonlinear absorbing material that exhibits strong reverse saturable absorption in the visible spectral region and large two-photon-assisted excited-state absorption in the near-IR region.

5.
Chemistry ; 17(8): 2479-91, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21264958

RESUMO

The synthesis, one-photon photophysics and two-photon absorption (2PA) of three dipolar D-π-A 4-[9,9-di(2-ethylhexyl)-7-diphenylaminofluoren-2-yl]-2,2':6',2''-terpyridine and their platinum chloride complexes with different linkers between the donor and acceptor are reported. All ligands exhibit (1)π,π* transition in the UV and (1)π,π*/(1)ICT (intramolecular charge transfer) transition in the visible regions, while the complexes display a lower-energy (1)π,π*/(1)CT (charge transfer) transition in the visible region in addition to the high-energy (1)π,π* transitions. All ligands and the complexes are emissive at room temperature and 77 K, with the emitting excited state assigned as the mixed (1)π,π* and (1)CT states at RT. Transient absorption from the ligands and the complexes were observed. 2PA was investigated for all ligands and complexes. The two-photon absorption cross-sections (σ(2)) of the complexes (600-2000 GM) measured by Z-scan experiment are much larger than those of their corresponding ligands measured by the two-photon induced fluorescence method. The ligand and the complex with the ethynylene linker show much stronger 2PA than those with the vinylene linker.


Assuntos
Fluorenos/química , Modelos Moleculares , Compostos Organoplatínicos/síntese química , Fótons , Compostos de Platina/química , Piridinas/química , Fluorenos/síntese química , Luminescência , Estrutura Molecular , Compostos Organoplatínicos/química , Processos Fotoquímicos , Piridinas/síntese química
6.
Opt Lett ; 35(9): 1305-7, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20436550

RESUMO

The singlet excited-state lifetime of a bipyridyl platinum(II) complex containing two alkynyl-benzothiazolylfluorene units was determined to be 145+/-105 ps by fitting femtosecond transient difference absorption data, and the triplet quantum yield was measured to be 0.14. A ground-state absorption cross section of 6.1 x 10(-19) cm(2) at 532 nm was deduced from UV-visible absorption data. Excited-state absorption cross sections of (6.7+/-0.1) x 10(-17) cm(2) (singlet) and (4.6+/-0.1) x 10(-16) cm(2) (triplet) were obtained by using a five-level dynamic model to fit open-aperture Z scans at picosecond and nanosecond pulse widths and a variety of pulse energies. For this complex, the ratio of the triplet excited-state absorption cross section to the ground-state absorption cross section--long used as a figure of merit for reverse saturable absorbers--thus stands at 754, to our knowledge the largest ever reported at 532 nm wavelength.

7.
Inorg Chem ; 49(10): 4507-17, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20405851

RESUMO

A series of mononuclear and dinuclear cyclometalated platinum(II) 6-phenyl-4-(9,9-dihexylfluoren-2-yl)-2,2'-bipyridine complexes (F-1-F-5) were synthesized and their photophysical properties were systematically investigated. All complexes exhibit strong (1)pi,pi* absorption bands in the UV region, and a broad, structureless charge transfer band in the visible region. The charge-transfer band is broadened and red-shifted for F-3-F-5 compared to those for F-1 and F-2 because of the electron-donating acetylide ligand and the involvement of the ligand-to-ligand charge transfer character. The molar extinction coefficients for the dinuclear complex F-5 are much higher than those for the mononuclear complexes F-1-F-4, indicating the electronic coupling through the bridge ligand. All complexes are emissive in solution at room temperature and in glassy matrix at 77 K. When excited at the charge transfer absorption band, the complexes exhibit a long-lived red/orange emission around 600 nm, which is attributed to a triplet metal-to-ligand charge transfer/intraligand charge transfer emission ((3)MLCT/(3)ILCT). For emission at 77 K, the emitting state is tentatively assigned as (3)MLCT for F-2-F-4, and (3)MLCT/(3)pi,pi* for F-1 and F-5 taking into account the emission energy, the shape of the spectrum, the lifetime, and the thermally induced Stokes shift. F-1-F-4 exhibit broad triplet transient difference absorption in the visible to the near-IR region, with a lifetime comparable to those measured from the decay of the (3)MLCT/(3)ILCT emission. Therefore, F-1-F-4 give rise to a strong reverse saturable absorption for ns laser pulses at 532 nm. Z-scan experiments were carried out at 532 nm using both ns and ps laser pulses, and the experimental data was fitted by a five-band model to extract the singlet and triplet excited-state absorption cross sections. The degree of reverse saturable absorption follows this trend: F-1 = F-2 > F-3 > F-4 > F-5, which is mainly determined by the ratio of the triplet excited-state absorption cross-section to that of the ground-state and the triplet excited-state quantum yield. Comparison of the photophysics of F-1, F-2, and F-3 to those of their corresponding Pt complexes without the fluorenyl substituent discovers that F-1-F-3 exhibit larger molar extinction coefficients for their low-energy charge transfer absorption band, longer triplet excited-state lifetimes, higher emission quantum yields, and increased ratios of the excited-state absorption cross-section to that of the ground-state.

8.
J Phys Chem A ; 112(31): 7200-7, 2008 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-18616331

RESUMO

The photophysical properties, such as the UV-vis absorption spectra, triplet transient difference absorption spectra, triplet excited-state extinction coefficients, quantum yields of the triplet excited state, and lifetimes of the triplet excited state, of 10 novel zinc phthalocyanine derivatives with mono- or tetraperipheral substituents have been systematically investigated in DMSO solution. All these complexes exhibit a wide optical window in the visible spectral range and display long triplet excited-state lifetimes (140-240 mus). It has been found that the complexes with tetrasubstituents at the alpha-positions exhibit a bathochromic shift in their UV-vis absorption spectra, fluorescence spectra, and triplet transient difference absorption spectra and have larger triplet excited-state absorption coefficients. The nonlinear absorption of these complexes has been investigated using the Z-scan technique. It is revealed that all complexes exhibit a strong reverse saturable absorption at 532 nm for nanosecond and picosecond laser pulses. The excited-state absorption cross sections were determined through a theoretical fitting of the experimental data using a five-band model. The complexes with tetrasubstituents at the alpha-positions exhibit larger ratios of triplet excited-state absorption to ground-state absorption cross sections (sigma T/sigma g) than the other complexes. In addition, the wavelength-dependent nonlinear absorption of these complexes was studied in the range of 470-550 nm with picosecond laser pulses. All complexes exhibit reverse saturable absorption in a broad visible spectral range for picosecond laser pulses. Finally, the nonlinear transmission behavior of these complexes for nanosecond laser pulses was demonstrated at 532 nm. All complexes, and especially the four alpha-tetrasubstituted complexes, exhibit stronger reverse saturable absorption than unsubstituted zinc phthalocyanines due to the larger ratio of their excited-state absorption cross sections to their respective ground-state absorption cross sections.


Assuntos
Indóis/química , Compostos Organometálicos/química , Absorção , Elétrons , Isoindóis , Modelos Lineares , Fotoquímica , Fenômenos Físicos , Física , Espectrofotometria Ultravioleta , Compostos de Zinco
9.
Opt Lett ; 33(10): 1053-5, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18483509

RESUMO

The singlet excited-state lifetime of a terpyridyl platinum(II) pentynyl complex was determined to be 268+/-87 ps by fitting femtosecond transient absorption data, the triplet excited-state lifetime was found to be 62 ns by fitting nanosecond transient absorption decay data, and the triplet quantum yield was measured to be 0.16. A ground-state absorption cross section of 2.5 x 10(-19) cm(2) at 532 nm was deduced from UV-vis absorption data. Excited-state absorption cross sections of 3.5 x 10(-17) cm(2) (singlet) and 4.5 x 10(-17) cm(2) (triplet) were obtained by using a five-level dynamic model to fit open-aperture Z scans at picosecond and nanosecond pulse widths and a variety of pulse energies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...