Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
J Am Coll Surg ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770953

RESUMO

BACKGROUND: Traumatic brain injury (TBI)-related morbidity is caused largely by secondary injury resulting from hypoxia, excessive sympathetic drive, and uncontrolled inflammation. Aeromedical evacuation (AE) is utilized by the military for transport of wounded soldiers to higher levels of care. We hypothesized that the hypobaric, hypoxic conditions of AE may exacerbate uncontrolled inflammation following TBI that could contribute to more severe TBI-related secondary injury. STUDY DESIGN: Thirty-six female pigs were used to test TBI vs. TBI sham, hypoxia vs. normoxia, and hypobaria vs. ground conditions. TBI was induced by controlled cortical injury, hypobaric conditions of 12,000 feet were established in an altitude chamber, and hypoxic exposure was titrated to 85% SpO2 while at altitude. Serum cytokines, UCH-L1 and TBI biomarkers were analyzed via ELISA. Gross analysis and staining of cortex and hippocampus tissue was completed for glial fibrillary acidic protein (GFAP) and phosphorylated tau (p-tau). RESULTS: Serum IL-1b, IL-6, and TNFα were significantly elevated following TBI in pigs exposed to altitude-induced hypobaria/hypoxia, as well as hypobaria alone, compared to ground level/normoxia. No difference in TBI biomarkers following TBI or hypobaric, hypoxic exposure was noted. No difference in brain tissue GFAP or p-tau when comparing the most different conditions of sham TBI+ground/normoxia to the TBI+hypobaria/hypoxia group was noted. CONCLUSION: The hypobaric environment of AE induces systemic inflammation following TBI. Severe inflammation may play a role in exacerbating secondary injury associated with TBI and contribute to worse neurocognitive outcomes. Measures should be taken to minimize barometric and oxygenation changes during AE following TBI.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38605437

RESUMO

BACKGROUND: Prior literature has implicated Red Blood Cells (RBCs) in the initiation of thrombosis and suggests that post-transfusion hypercoagulability may occur secondary to the effects of RBCs. Elevated serum tissue factor is a known sequelae of acute trauma. Phosphatidylserine is a pro-thrombotic phospholipid present within the RBC cell membrane. We hypothesized that RBC aggregation is dependent on the interaction between RBC membrane bound (exposed) PS, extracellular calcium, and tissue factor. METHODS: Human whole blood (WB) was separated into components including red blood cells (RBC) and platelet-rich plasma (PRP). WB, PRP, and RBCs underwent impedance aggregometry utilizing arachidonic acid (AA), ADP, collagen, calcium, and tissue factor (TF)-based agonists. RBCs then underwent impedance aggregometry utilizing combined calcium and TF agonists. RBCs were pre-treated with Annexin V, a known PS blocking agent, and underwent impedance aggregometry with combined calcium and TF agonists to determine if the mechanism of calcium/TF-induced RBC aggregability is dependent on PS. RBCs treated with calcium, TF, calcium+TF, and pre-treated with Annexin V followed by calcium+TF were perfused through an in vitro model of pulmonary microcirculatory flow. RESULTS: RBC aggregation was significantly higher than that of WB and PRP when utilizing a TF agonist, an effect unique to TF. The combination of calcium and TF demonstrated significantly higher RBC aggregation than either agonist alone. Pre-treatment with Annexin V resulted in a significantly reduced aggregability of RBC following treatment with TF + calcium. RBCs aged to 42 days did not exhibit significant change in aggregation. Exposure to calcium and TF significantly reduced time to thrombosis of RBCs perfused through a pulmonary microcirculatory model. CONCLUSION: Treatment with both TF and calcium synergistically induces RBC aggregation. PS appears to play an integral role in the TF/calcium-based, age-independent RBC aggregation response. RBCs treated with TF + calcium exhibit more rapid thrombus formation in an in vitro model of pulmonary microcirculatory perfusion.Study Type: human sample-based study. LEVEL OF EVIDENCE: basic science paper.

3.
Transfus Apher Sci ; 63(2): 103890, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355315

RESUMO

INTRODUCTION: The use of packed red blood cells (pRBCs) for resuscitation is limited by the red blood cell storage lesion, a series of biochemical and physiological changes that occur during the storage and aging of blood. Microvesicles (MVs) shed from pRBCs during this process are one component of the red blood cell storage lesion and lead to acute lung injury and pulmonary vascular microthrombi. We hypothesized that MVs from stored pRBCs lead to the release of P-selectin and von Willebrand factor (vWF) from endothelial cells and that this mechanism is mediated via activation of protein kinase C (PKC) or protein kinase A (PKA). METHODS: Leukoreduced, platelet-poor murine pRBCs were isolated from C57BL/6 8-12 week-old male mice via cardiac puncture, prepared via centrifugation using a Ficoll gradient, and stored for up to 14 days, the equivalent of 42 days of storage in humans. MVs were isolated from the stored pRBC units via sequential high-speed centrifugation. Murine lung endothelial cells (MLECs) were cultured and grown to confluence, then treated with MVs and either calphostin C, a PKC inhibitor (10 µg/mL), or PKI 14-22 amide, a PKA inhibitor (10 µM). The supernatant was collected after 1 h. P-selectin and vWF A2 concentrations were quantified via ELISA. Immunofluorescent staining for vWF was performed on MLECs. Statistical analysis was performed via unpaired t-test or ANOVA as indicated and reported as mean ± SD. Concentration is reported as pg/mL. RESULTS: MLECs treated with MVs isolated from stored pRBCs demonstrated increased release of P-selectin and vWF A2 in a dose-dependent fashion. MLECs treated with MVs prepared from stored as compared to fresh pRBCs demonstrated increased release of P-selectin (3751 ± 726 vs 359 ± 64 pg/mL, p < 0.0001) and vWF A2 (3141 ± 355 vs 977 ± 75 pg/mL, p < 0.0001) with increasing duration of storage. The treatment of MVs with calphostin C decreased the amount of P-selectin (1471 ± 444 vs 3751 ± 726 pg/mL, p < 0.0001) and VWF A2 (2401 ± 289 vs 3141 ± 355 pg/mL, p = 0.0017) released into the supernatant by MLECs compared to MVs alone. The treatment of MVs with PKI 14-22 increased the amount of P-selectin released compared to MVs alone (1999 ± 67 vs 1601 ± 135 pg/mL, p = 0.0018). CONCLUSIONS: MVs from stored pRBCs stimulate the release of P-selectin and VWF A2 from endothelial cells. The effect of MVs increases with both dose of MVs and age of stored pRBCs from which they are formed. This mechanism is dependent on activation of PKC and inhibition of this enzyme represents a potentially significant strategy to modulate the inflammatory response to resuscitation with stored pRBCs.


Assuntos
Células Endoteliais , Naftalenos , Fator de von Willebrand , Animais , Masculino , Camundongos , Células Endoteliais/metabolismo , Eritrócitos/metabolismo , Camundongos Endogâmicos C57BL , Selectina-P , Proteína Quinase C , Fator de von Willebrand/metabolismo
4.
J Surg Res ; 296: 643-653, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359679

RESUMO

INTRODUCTION: Desmopressin (DDAVP) has been utilized clinically in patients taking aspirin (ASA) to improve drug-induced platelet dysfunction. Misoprostol and carboprost, prostaglandin analogs commonly used for postpartum hemorrhage, may also induce platelet aggregation. The aim of this study was to determine the effects of DDAVP, misoprostol, and carboprost administration on platelet aggregability following traumatic brain injury (TBI) in mice treated with ASA. METHODS: Male C57BL/6 mice were randomized into seven groups (n = 5 each): untouched, ASA only, Saline/TBI, ASA/TBI, ASA/TBI/DDAVP 0.4 µg/kg, ASA/TBI/misoprostol 1 mg/kg, and ASA/TBI/carboprost 100 µg/kg. TBI was induced via a weight drop model 4-h after ASA (50 mg/kg) gavage. Mice were given an intraperitoneal injection of DDAVP, misoprostol, or carboprost 10 minutes after TBI. In vivo testing was completed utilizing tail vein bleed. Mice were sacrificed 30-min posttreatment and blood was collected via cardiac puncture. Whole blood was analyzed via Multiplate impedance aggregometry, rotational thromboelastometry, and TEG6s. RESULTS: Mice receiving misoprostol after ASA/TBI demonstrated decreased tail vein bleeding times compared to ASA only treated mice. However, mice treated with misoprostol following ASA and TBI demonstrated decreased platelet aggregability compared to untouched mice and TBI only mice within the arachidonic acid agonist pathway. By contrast, DDAVP and carboprost did not significantly change platelet aggregability via adenosine diphosphate or arachidonic acid following ASA and TBI. However, DDAVP did decrease the platelet contribution to clot via rotational thromboelastometry. CONCLUSIONS: Reversal of medication-induced platelet inhibition has become increasingly controversial after TBI. Based on these results, DDAVP, misoprostol, nor carboprost consistently improve platelet aggregability following TBI in those also treated with ASA.


Assuntos
Lesões Encefálicas Traumáticas , Carboprosta , Misoprostol , Humanos , Feminino , Masculino , Camundongos , Animais , Aspirina/farmacologia , Aspirina/uso terapêutico , Desamino Arginina Vasopressina/farmacologia , Desamino Arginina Vasopressina/uso terapêutico , Carboprosta/farmacologia , Misoprostol/farmacologia , Misoprostol/uso terapêutico , Ácido Araquidônico/farmacologia , Camundongos Endogâmicos C57BL , Agregação Plaquetária/fisiologia , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico
5.
J Surg Res ; 296: 230-238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295710

RESUMO

INTRODUCTION: Various murine models have been utilized to study TBI, including closed head injury (CHI) and controlled cortical impact (CCI), without direct comparison. The aim of our study was to evaluate these models to determine differences in neurological and behavioral outcomes postinjury. METHODS: Male C57B/6 mice (9-10 wk) were separated into six groups including: untouched, sham craniotomy (4 mm), CCI 0.9 mm depth of impact, CCI 1.6 mm, CCI 2.2 mm, and CHI. CCI was performed using a 3 mm impact tip at a velocity of 5 m/s, dwell time of 250 ms, and depth as noted above. CHI was completed with a centered 400 g weight drop from 1 cm height. Mice were survived to 14-d (n = 5 per group) and 30-d (n = 5 per group) respectively for histological analysis of p-tau within the hippocampus. These mice underwent Morris Water Maze memory testing and Rotarod motor testing. Serum was collected from a separate cohort of mice (n = 5 per group) including untouched, isoflurane only, CCI 1.6 mm, CHI at 1, 4, 6, and 24 h for analysis of neuron specific enolase and glial fibrillary acidic protein (GFAP) via ELISA. Laser speckle contrast imaging was analyzed prior to and after impact in the CHI and CCI 1.6 mm groups. RESULTS: There were no significant differences in Morris Water Maze or Rotarod testing times between groups at 14- or 30-d. P-tau was significantly elevated in all groups except CCI 1.6 mm contralateral and CCI 2.2 mm ipsilateral compared to untouched mice at 30-d. P-tau was also significantly elevated in the CHI group at 30 d compared to CCI 1.6 mm contralateral and CCI 2.2 mm on both sides. GFAP was significantly increased in mice undergoing CHI (9959 ± 91 pg/mL) compared to CCI (2299 ± 1288 pg/mL), isoflurane only (133 ± 75 pg/mL), and sham (86 ± 58 pg/mL) at 1-h post TBI (P < 0.0001). There were no differences in serum neuron specific enolase levels between groups. Laser doppler imaging demonstrated similar decreases in cerebral blood flow between CHI and CCI; however, CCI mice had a reduction in blood flow with craniotomy only that did not significantly decrease further with impact. CONCLUSIONS: Based on our findings, CHI leads to increased serum GFAP levels and increased p-tau within the hippocampus at 30-d postinjury. While CCI allows the comparison of one cerebral hemisphere to the other, CHI may be a better model of TBI as it requires less technical expertise and has similar neurological outcomes in these murine models.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos Cranianos Fechados , Isoflurano , Humanos , Camundongos , Animais , Masculino , Hipocampo/patologia , Fosfopiruvato Hidratase , Modelos Animais de Doenças
6.
J Surg Res ; 295: 611-618, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38096775

RESUMO

INTRODUCTION: Syndecan-1 is a heparan sulfate proteoglycan found in the glycocalyx of vascular endothelial cells. Serum levels of syndecan-1 have repeatedly been demonstrated to increase following traumatic injury and shock, but it is unclear whether syndecan-1 plays an active role in the inflammatory response or is simply a biomarker of a state of hypoperfusion. The aim of this study was to identify the role of syndecan-1 role in the inflammatory process in the absence of trauma. METHODS: Male mice were randomized into five groups (n = 3). Four groups received increasing concentrations of syndecan-1 (1, 10, 100, and 1000pg/mL per blood volume) and a fifth group was given normal saline as a control via intravenous injection. These concentrations were selected based on previous syndecan-1 enzyme-linked immunosorbent assay data acquired following induced hemorrhagic shock in mice resulting in serum levels of 10-6000 pg/mL. Mice from each group were sacrificed at 1-, 4-, and 24-h time points for serum biomarker evaluation. A multiplex enzyme-linked immunosorbent assay was performed to analyze proinflammatory cytokines and chemokines including interleukin (IL)-1a, IL-1b, IL-2, IL-3, IL-4, IL-6, IL-10, IL-12, IL-17, monocyte chemoattractant protein-1, TNF-α, macrophage inflammatory protein-1α, granulocyte-macrophage colony-stimulating factor, and normal T cell expressed and presumably secreted levels. Whole blood was analyzed via rotational thromboelastometry in a separate group of mice dosed with syndecan-1 at 1000 pg/mL and compared to sham mice at 1 h. RESULTS: Tumor necrosis factor-α was significantly elevated in the 1000 pg/mL group compared to sham animals. There were no significant changes in IL-1a, IL-1b, IL-2, IL-3, IL-4, IL-6, IL-10, IL-12, monocyte chemoattractant protein--1, macrophage inflammatory protein-1α, granulocyte-macrophage colony-stimulating factor, or normal T cell expressed and presumably secretedat 1, 4, and 24 h for any group when compared to mice receiving saline alone. No significant differences were noted in coagulability between the 1000 pg/mL syndecan-1 group and shams at 1 h CONCLUSIONS: Inflammatory cytokine concentrations did not change with increasing dosage of syndecan-1 within mice at any timepoint, except for an acute change in tumor necrosis factor-α which was transient. Based on our results, syndecan-1 appears to be a biomarker for inflammation rather than an active participant in eliciting an inflammatory response. Further research will focus on the role of syndecan-1 following hemorrhagic shock.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Choque Hemorrágico , Humanos , Masculino , Camundongos , Animais , Interleucina-10 , Interleucina-6 , Células Endoteliais , Fator de Necrose Tumoral alfa , Choque Hemorrágico/complicações , Sindecana-1 , Interleucina-2 , Interleucina-3 , Interleucina-4 , Citocinas , Interleucina-12 , Biomarcadores , Proteínas Inflamatórias de Macrófagos
7.
Mil Med ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37997688

RESUMO

INTRODUCTION: While previous studies have analyzed military surgeon experience within military-civilian partnerships (MCPs), there has never been an assessment of how well military providers are integrated within an MCP. The Center for Sustainment of Trauma and Readiness Skills, Cincinnati supports the Critical Care Air Transport Advanced Course and maintains the clinical skills of its staff by embedding them within the University of Cincinnati Medical Center. We hypothesized that military trauma surgeons are well integrated within University of Cincinnati Medical Center and that they are exposed to a similar range of complex surgical pathophysiology as their civilian partners. MATERIALS AND METHODS: After Institutional Review Board approval, Current Procedural Terminology (CPT) codes were abstracted from billing data for trauma surgeons covering University of Cincinnati Hospitals in 2019. The number of trauma resuscitations and patient acuity metrics were abstracted from the Trauma Registry and surgeon Knowledge, Skills, and Abilities clinical activity (KSA-CA) scores were calculated using their CPT codes. Finally, surgeon case distributions were studied by sorting their CPT codes into 23 categories based on procedure type and anatomic location. Appropriate, chi-squared or Mann-Whitney U-tests were used to compare these metrics between the military and civilian surgeon groups and the metrics were normalized by the group's full-time equivalent (FTE) to adjust for varying weeks on service between groups. RESULTS: Data were available for two active duty military and nine civilian staff. The FTEs were significantly lower in the military group: military 0.583-0.583 (median 0.583) vs. civilian 0.625-1.165 (median 1.0), P = 0.04. Per median FTE and surgeon number, both groups performed a similar number of trauma resuscitations (civilian 214 ± 54 vs. military 280 ± 13, P = 0.146) and KSA-CA points (civilian 55,629 ± 25,104 vs. military 36,286 ± 11,267; P = 0.582). Although the civilian surgeons had a higher proportion of hernia repairs (P < 0.001) and laparoscopic procedures (P = 0.006), the CPT code categories most relevant to combat surgery (those relating to solid organ, hollow viscus, cardiac, thoracic, abdominal, and tissue debridement procedures) were similar between the surgeon groups. Finally, patient acuity metrics were similar between groups. CONCLUSION: This is the first assessment of U.S. Air Force trauma surgeon integration relative to their civilian partners within an MCP. Normalized by FTE, there was no difference between the two groups' trauma experience to include patient acuity metrics and KSA-CA scores. The proportion of CPT codes that was most relevant to expeditionary surgery was similar between the military and civilian partners, thus optimizing the surgical experience for the military trauma surgeons within University of Cincinnati Medical Center. The methods used within this pilot study can be generalized to any American College of Surgeons verified Trauma Center MCP, as standard databases were used.

8.
Mil Med ; 188(Suppl 6): 295-303, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37948243

RESUMO

INTRODUCTION: Negative pressure wound therapy (NPWT) is utilized early after soft tissue injury to promote tissue granulation and wound contraction. Early post-injury transfers via aeromedical evacuation (AE) to definitive care centers may actually induce wound bacterial proliferation. However, the effectiveness of NPWT or instillation NPWT in limiting bacterial proliferation during post-injury AE has not been studied. We hypothesized that instillation NPWT during simulated AE would decrease bacterial colonization within simple and complex soft tissue wounds. METHODS: The porcine models were anesthetized before any experiments. For the simple tissue wound model, two 4-cm dorsal wounds were created in 34.9 ± 0.6 kg pigs and were inoculated with Acinetobacter baumannii (AB) or Staphylococcus aureus 24 hours before a 4-hour simulated AE or ground control. During AE, animals were randomized to one of the five groups: wet-to-dry (WTD) dressing, NPWT, instillation NPWT with normal saline (NS-NPWT), instillation NPWT with Normosol-R® (NM-NPWT), and RX-4-NPWT with the RX-4 system. For the complex musculoskeletal wound, hind-limb wounds in the skin, subcutaneous tissue, peroneus tertius muscle, and tibia were created and inoculated with AB 24 hours before simulated AE with WTD or RX-4-NPWT dressings. Blood samples were collected at baseline, pre-flight, and 72 hours post-flight for inflammatory cytokines interleukin (IL)-1ß, IL-6, IL-8 and tumor necrosis factor alpha. Wound biopsies were obtained at 24 hours and 72 hours post-flight, and the bacteria were quantified. Vital signs were measured continuously during simulated AE and at each wound reassessment. RESULTS: No significant differences in hemodynamics or serum cytokines were noted between ground or simulated flight groups or over time in either wound model. Simulated AE alone did not affect bacterial proliferation compared to ground controls. The simple tissue wound arm demonstrated a significant decrease in Staphylococcus aureus and AB colony-forming units at 72 hours after simulated AE using RX-4-NPWT. NS-NPWT during AE more effectively prevented bacterial proliferation than the WTD dressing. There was no difference in colony-forming units among the various treatment groups at the ground level. CONCLUSION: The hypoxic, hypobaric environment of AE did not independently affect the bacterial growth after simple tissue wound or complex musculoskeletal wound. RX-4-NPWT provided the most effective bacterial reduction following simulated AE, followed by NS-NPWT. Future research will be necessary to determine ideal instillation fluids, negative pressure settings, and dressing change frequency before and during AE.


Assuntos
Resgate Aéreo , Tratamento de Ferimentos com Pressão Negativa , Lesões dos Tecidos Moles , Infecção dos Ferimentos , Animais , Suínos , Lesões dos Tecidos Moles/terapia , Citocinas , Bandagens , Infecção dos Ferimentos/prevenção & controle
9.
J Surg Res ; 291: 691-699, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37562231

RESUMO

INTRODUCTION: Seven key inflammatory biomarkers were recently found to be associated with the risk of mortality in a multicenter study of massively transfused patients. The aim of this prospective single-center study was to determine which of these early inflammatory markers could predict 30-d mortality among all critically injured trauma patients. METHODS: Serum samples were collected at 6, 24, and 72 h from 238 consecutive patients admitted to the intensive care unit following traumatic injury. Inflammatory markers syndecan-1, eotaxin, IL-1ra, IL-6, IL-8, IL-10, IP-10, and MCP-1 were analyzed via multiplex enzyme-linked immunosorbent assay. Subgroup analysis was performed for patients undergoing massive transfusion (≥5 red blood cells), submassive transfusion (1-4 red blood cells), or no transfusion during the first 4 h postinjury. The primary outcome of 30-d survival was modeled as a function of each biomarker and confounders using repeat measures logistic regression. RESULTS: Patients had a median age of 51.3 y [33.7, 70.2], 70.6% were male, 17.4% experienced penetrating trauma, and had a median injury severity score of 22 [14, 33]. IL-1ra, IL-8, IL-10, and MCP-1 were significantly increased during the first 72 h in nonsurvivors (n = 31). Elevated IL-1ra, IL-8, IL-10, and MCP-1 at 6 h postinjury were associated with 30-d mortality. By contrast, serum syndecan-1 and eotaxin levels were not associated with mortality at any time point. IL-8 and lactate were increased at 6 h in 30-d nonsurvivors for patients receiving submassive transfusion (n = 78). CONCLUSIONS: Early evaluations of IL-1ra, IL-8, IL-10, and IP-10 within 6 h of injury are useful predictors of 30-d mortality. Subgroup analysis suggests that transfusion status does not significantly affect early inflammatory markers. LEVEL OF EVIDENCE: Level III, prognostic/epidemiological.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1 , Ferimentos e Lesões , Humanos , Masculino , Feminino , Interleucina-10 , Sindecana-1 , Estudos Prospectivos , Interleucina-8 , Quimiocina CXCL10 , Biomarcadores , Ferimentos e Lesões/complicações , Ferimentos e Lesões/diagnóstico , Ferimentos e Lesões/terapia
10.
JAMA Surg ; 158(7): 746, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37195710
11.
J Trauma Acute Care Surg ; 95(1): 21-29, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012625

RESUMO

BACKGROUND: Resuscitation with plasma components has been shown to improve endotheliopathy induced by hemorrhagic shock, but the optimal resuscitation strategy to preserve the endothelial glycocalyx has yet to be defined. The aim of this study was to determine if resuscitation with lactated Ringer's (LR), whole blood (WB), packed red blood cells (RBCs), platelet-rich plasma (PRP), platelet poor plasma, balanced RBC:PRP (1:1), or day 14 (d14) RBC would best minimize endothelial damage following shock. METHODS: Male C57BL/6 mice were hemorrhaged to a goal mean arterial pressure of 25 mm Hg for 1 hour. Unshocked sham mice served as controls. Mice were then resuscitated with equal volumes of LR, WB, RBC, PRP, platelet poor plasma, 1:1, or d14 RBC and then sacrificed at 1, 4, or 24 hours (n = 5). Serum was analyzed for syndecan-1, ubiquitin C-terminal hydrolase L1, and cytokine concentrations. Lungs underwent syndecan-1 immunostaining, and lung injury scores were calculated after hematoxylin and eosin. Proteolytic cleavage of the endothelial glycocalyx was assessed by serum matrix metalloprotease 9 levels. RESULTS: Serum syndecan-1 and ubiquitin C-terminal hydrolase L1 levels were significantly increased following resuscitation with d14 RBC compared with other groups. Early elevation in lung syndecan-1 staining was noted in LR-treated mice, while d14 mice showed decreased staining compared with sham mice following shock. Lung injury scores were significantly elevated 4 hours after resuscitation with LR and d14 RBC compared with WB. Serum matrix metalloprotease 9 levels were significantly increased at 1 and 4 hours in d14 mice compared with sham mice. Systemic inflammation was increased in animals receiving LR, 1:1, or d14 RBC. CONCLUSION: Resuscitation with WB following hemorrhagic shock reduces endothelial syndecan-1 shedding and mitigates lung injury. Aged RBC and LR fail to attenuate endothelial injury following hemorrhagic shock. Further research will be necessary to determine the effect of each of these resuscitative fluids in a hemorrhagic shock model with the addition of tissue injury.


Assuntos
Lesão Pulmonar , Choque Hemorrágico , Camundongos , Masculino , Animais , Choque Hemorrágico/terapia , Sindecana-1 , Ubiquitina Tiolesterase , Camundongos Endogâmicos C57BL , Lactato de Ringer , Metaloproteases , Ressuscitação , Modelos Animais de Doenças , Soluções Isotônicas
12.
Surgery ; 173(3): 821-829, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36280503

RESUMO

BACKGROUND: Platelet activation and aggregation are critical to the initiation of hemostasis after trauma with hemorrhage. Platelet dysfunction is a well-recognized phenomenon contributing to trauma-induced coagulopathy. The goal of this study was to evaluate the timing and severity of platelet dysfunction in massively transfused, traumatically injured patients during the first 72 hours after injury and its association with 30-day survival. METHODS: A retrospective secondary cohort study of platelet count and function was performed using samples from the Pragmatic Randomized Optimal Platelet and Plasma Ratios trial. Platelet characteristics were measured at 8 timepoints during the first 72 hours of hospitalization and compared between 30-day survivors and nonsurvivors. Platelet counts were assessed via flow cytometry. Platelet function was analyzed with the use of serial thrombelastography and impedance aggregometry with agonists arachidonic acid, adenosine diphosphate, collagen, thrombin receptor activating peptide, and ristocetin. RESULTS: In total, 680 patients were included for analysis. Platelet counts were significantly lower from baseline to 72 hours after hospital admission with further 1.3 to 2-fold reductions noted in nonsurvivors compared to survivor patients. Platelet aggregation via adenosine diphosphate, arachidonic acid, collagen, thrombin receptor activating peptide, and ristocetin was significantly lower in nonsurvivors at all time points. The nadir of platelet aggregation was 2 to 6 hours after admission with significant improvements in viscoelastic maximum clot formation and agonist-induced aggregation by 12 hours without concomitant improvement in platelet count. CONCLUSION: Platelet aggregability recovers 12 hours after injury independent of worsening thrombocytopenia. Failure of platelet function to recover portends a poor prognosis.


Assuntos
Plaquetas , Ristocetina , Humanos , Ristocetina/farmacologia , Estudos Retrospectivos , Ácido Araquidônico/farmacologia , Estudos de Coortes , Plaquetas/fisiologia , Testes de Função Plaquetária , Colágeno , Difosfato de Adenosina/farmacologia , Receptores de Trombina
13.
Surgery ; 173(3): 562-566, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572619

RESUMO

Grit is a personality trait that is defined as passion and perseverance for a long-term goal. Resilience is defined as the ability to recover or adjust to misfortune or change. The 2 concepts are inexorably intertwined. Surgery residents demonstrate higher average grit scores than the general population. Increased levels of grit predict success in many areas of life and are positively correlated with satisfaction in surgery residency. Decreased levels of grit correlate with burnout, attrition, and suicidality in resident surgeons. Personal grittiness can be increased by a focused interest in an area, deliberate goal-directed practice, finding a calling in life, and cultivating hope and resilience. Resilience, like grit, can be nurtured over time with deliberate steps. Grit and resilience are important in residency training, and training programs can be tailored to promote a wise environment, with demanding, yet supportive, departments. Organizational grit can be boosted by seeking to maximize successful attributes of dynamic organizations.


Assuntos
Esgotamento Profissional , Internato e Residência , Cirurgiões , Humanos , Esgotamento Profissional/prevenção & controle , Esgotamento Profissional/epidemiologia
14.
Mil Med ; 188(9-10): 3086-3094, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35446424

RESUMO

BACKGROUND: The majority of critical care air transport (CCAT) flights are regulated, meaning that a theater-validating flight surgeon has confirmed that the patient is medically cleared for flight and that evacuation is appropriate. If the conditions on the ground do not allow for this process, the flight is unregulated. Published data are limited regarding CCAT unregulated missions to include the period of troop drawdown at the end of the Afghanistan conflict. The objective of our study was to characterize the unregulated missions within Afghanistan during troop drawdown and compare them to regulated missions during the same timeframe. STUDY DESIGN: We performed a retrospective review of all CCAT medical records of patients transported via CCAT within Afghanistan between January 2017 and December 2019. We abstracted data from the records, including mission characteristics, patient demographics, injury descriptors, preflight military treatment facility procedures, CCAT procedures, in-flight CCAT treatments, in-flight events, and equipment issues. Following descriptive and comparative analysis, a Cochran-Armitage test was performed to evaluate the statistical significance of the trend in categorical data over time. Multivariable regression was used to assess the association between vasopressors and preflight massive transfusions, preflight surgical procedures, injury patterns, and age. RESULTS: We reviewed 147 records of patients transported via CCAT: 68 patients were transported in a regulated fashion and 79 on an unregulated flight. The number of patients evacuated increased year-over-year (n = 22 in 2017, n = 57 in 2018, and n = 68 in 2019, P < .001), and the percentage of missions that were unregulated grew geometrically (14%, n = 3 in 2017; 37%, n = 21 in 2018; and 81%, n = 55 in 2019, P < .001). During the time studied, CCAT teams were being used more to decompress forward surgical teams (FST) and, therefore, they were transporting patients just hours following initial damage control surgery in an unregulated fashion. In 2 instances, CCAT decompressed an FST following a mass casualty, during which aeromedical evacuation (AE) crews assisted with patient care. For the regulated missions, the treatments that were statistically more common were intravenous fluids, propofol, norepinephrine, any vasopressors, and bicarbonate. During unregulated missions, the statistically more common treatments were ketamine, fentanyl, and 3% saline. Additional analysis of the mechanically ventilated patient subgroup revealed that vasopressors were used twice as often on regulated (38%) vs. unregulated (13%) flights. Multivariable regression analysis demonstrated that traumatic brain injury (TBI) was the only significant predictor of in-flight vasopressor use (odds ratio = 3.53, confidence interval [1.22, 10.22], P = .02). CONCLUSION: During the troop drawdown in Afghanistan, the number of unregulated missions increased geometrically because the medical footprint was decreasing. During unregulated missions, CCAT providers used ketamine more frequently, consistent with Tactical Combat Casualty Care guidelines. In addition, TBI was the only predictor of vasopressor use and may reflect an attempt to adhere to unmonitored TBI clinical guidelines. Interoperability between CCAT and AE teams is critical to meet mass casualty needs in unregulated mission environments and highlights a need for joint training. It remains imperative to evaluate changes in mission requirements to inform en route combat casualty care training.


Assuntos
Resgate Aéreo , Lesões Encefálicas Traumáticas , Ketamina , Militares , Humanos , Afeganistão , Estudos Retrospectivos , Cuidados Críticos/métodos
15.
Shock ; 58(6): 565-572, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548646

RESUMO

ABSTRACT: Introduction: The optimal management strategies for patients with polytraumatic injuries that include traumatic brain injury (TBI) are not well defined. Specific interventions including tranexamic acid (TXA), propranolol, and hypertonic saline (HTS) have each demonstrated benefits in patient mortality after TBI, but have not been applied to TBI patients with concomitant hemorrhage. The goals of our study were to determine the inflammatory effects of resuscitation strategy using HTS or shed whole blood (WB) and evaluate the cerebral and systemic inflammatory effects of adjunct treatment with TXA and propranolol after combined TBI + hemorrhagic shock. Methods: Mice underwent TBI via weight drop and were subsequently randomized into six experimental groups: three with HTS resuscitation and three with WB resuscitation. Mice were then subjected to controlled hemorrhagic shock for 1 h to a goal MAP of 25 mmHg. Mice were then treated with an i.p. dose of 4 mg/kg propranolol, 100 mg/kg TXA, or normal saline (NS) as a control. Mice were killed at 1, 6, or 24 h for serum and cerebral biomarker evaluation by multiplex ELISA and serum neuron-specific enolase, a biomarker of cerebral cellular injury. Results: Mice resuscitated with HTS had elevated serum proinflammatory cytokines compared with WB resuscitated groups at 6 and 24 h after injury, with no significant difference in cerebral cytokine levels. Within the TBI/shock + HTS groups, the addition of propranolol or TXA did not significantly alter serum cytokine concentration, but cerebral IL-2, IL-12, and macrophage inflammatory protein-1α (MIP-1α) decreased after propranolol administration. In the TBI/shock + WB cohorts, the addition of both propranolol and TXA increased systemic proinflammatory cytokine levels at 6 and 24 h after injury as demonstrated by serum IL-2, IL-12, MIP-1α, and IL-1ß compared with NS control. By contrast, TBI/shock + WB mice demonstrated a significant reduction in cerebral IL-2, IL-12, and MIP-1α in propranolol treated mice 6 h after injury compared with NS group. While serum neuron-specific enolase was significantly increased 1 and 24 h after injury in TBI/shock + HTS + TXA cohorts compared with NS control, it was significantly reduced in the TBI/shock + WB + propranolol mice compared with NS control 24 h after injury. Conclusions: Whole blood resuscitation can reduce the acute postinjury neuroinflammatory response after combined TBI/shock compared with HTS. The addition of either propranolol or TXA may modulate the postinjury systemic and cerebral inflammatory response with more improvements noted after propranolol administration. Multimodal treatment with resuscitation and pharmacologic therapy after TBI and hemorrhagic shock may mitigate the inflammatory response to these injuries to improve recovery.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Choque Hemorrágico , Ácido Tranexâmico , Camundongos , Animais , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/complicações , Quimiocina CCL3 , Propranolol/uso terapêutico , Interleucina-2/uso terapêutico , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Citocinas , Solução Salina Hipertônica/uso terapêutico , Solução Salina/uso terapêutico , Ácido Tranexâmico/uso terapêutico , Interleucina-12 , Terapia Combinada , Biomarcadores , Fosfopiruvato Hidratase/uso terapêutico , Ressuscitação , Modelos Animais de Doenças
16.
Surgery ; 172(6): 1829-1836, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36109200

RESUMO

BACKGROUND: Current management of hemorrhagic shock relies on control of surgical bleeding along with resuscitation with packed red blood cells and plasma in a 1-to-1 ratio. Transfusion, however, is not without consequence as red blood cells develop a series of biochemical and physical changes during storage termed "the red blood cell storage lesion." Previous data has suggested that ethanol may stabilize the red blood cell membrane, resulting in improved deformability. We hypothesized that storage of packed red blood cells with ethanol would alter the red blood cell storage lesion. METHODS: Mice underwent donation and storage of red blood cells with standard storage conditions in AS-3 alone or ethanol at concentrations of 0.07%, 0.14%, and 0.28%. The red blood cell storage lesion parameters of microvesicles, Band-3, free hemoglobin, annexin V, and erythrocyte osmotic fragility were measured and compared. In additional experiments, the mice underwent hemorrhage and resuscitation with stored packed red blood cells to further evaluate the in vivo inflammatory impact. RESULTS: Red blood cells stored with ethanol demonstrated decreased microvesicle accumulation and Band-3 levels. There were no differences in phosphatidylserine or cell-free hemoglobin levels. After hemorrhage and resuscitation with packed red blood cells stored with 0.07% ethanol, mice demonstrated decreased serum levels of interleukin-6, macrophage inflammatory protein-1α, keratinocyte chemokine, and tumor necrosis factor α compared to those mice receiving packed red blood cells stored with additive solution-3. CONCLUSION: Storage of murine red blood cells with low-dose ethanol results in decreased red blood cell storage lesion severity. Resuscitation with packed red blood cells stored with 0.07% ethanol also resulted in a decreased systemic inflammatory response in a murine model of hemorrhage.


Assuntos
Transfusão de Eritrócitos , Etanol , Camundongos , Animais , Transfusão de Eritrócitos/métodos , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Hemorragia
17.
J Surg Res ; 280: 234-240, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36007482

RESUMO

INTRODUCTION: While the pillars of trauma resuscitation are surgical hemostasis and blood product administration, norepinephrine (NE) can be used as an adjunct. The goal of this study was to evaluate the relationship between the maximum dose of NE, timing of NE administration, and mortality in trauma patients. METHODS: Patients admitted between January 2013 and January 2021 treated with NE were reviewed. Univariate and multivariate logistic regression were used to assess whether maximum NE dose was independently associated with mortality. Optimal dosage rates for NE were determined via Youden Index. Subgroup analyses comparing those who received NE within versus after the first 24 h of admission were conducted. RESULTS: Three hundred fifty-first trauma patients were included, with 217 (62%) surviving. Patients who died received an average maximum dose of 16.7 mcg/min compared to 9.1 mcg/min in survivors (P = 0.0003). Mortality rate increased with dosage (P < 0.0001), with doses greater than 20 mcg/min having 79% mortality. Those who received NE within the first 24 h had an inflection point in mortality at 16 mcg/min (Youden = 0.45) (OR 1.06; 95% CI 1.03-1.10). For patients who received NE after the first 24 h, an inflection point in mortality was at 10 mcg/min (Youden = 0.34) (OR 1.09; 95% CI 1.04-1.14). CONCLUSIONS: Higher maximum doses of NE were associated with increased mortality. Patients initiated on NE more than 24 h into their admission displayed an inflection point at a lower dose than those initiated later. This suggests that trauma patients initiated on NE after 24 h from injury may have a dire prognosis.


Assuntos
Norepinefrina , Vasoconstritores , Humanos , Norepinefrina/uso terapêutico , Ressuscitação
18.
J Surg Res ; 279: 548-556, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35921721

RESUMO

INTRODUCTION: Patients who undergo splenectomy (SPLN) have an estimated 10%-35% risk of venous thromboembolic events; however, the underlying mechanism and strategy for prevention have yet to be identified. The goals of this study were to 1) investigate platelet aggregation after SPLN, 2) examine if aspirin administration could mitigate this effect, and 3) determine if concomitant hemorrhage would affect post-SPLN platelet function and response to aspirin. METHODS: Murine models of operative SPLN and submandibular bleed (SMB) were utilized. Mice were randomized to eight groups as follows: untouched, SPLN, sham (laparotomy only), SMB, SPLN + SMB, SPLN + aspirin (ASA), SMB + ASA, and SPLN + SMB + ASA. Aspirin (50 mg/kg) was administered on postoperative days (PODs) one and two via oral gavage. Mice were euthanized on POD 3, platelet counts were obtained, and blood samples were analyzed via rotational thromboelastometry and impedance aggregometry with adenosine diphosphate (ADP) and arachidonic acid (AA) as agonists. RESULTS: By POD 3, SPLN mice displayed a significant thrombocytosis compared to untouched, SMB, and sham SPLN mice. Clotting time and clot formation time were significantly decreased in SPLN and SPLN + SMB cohorts compared to untouched and sham controls with elevated mean clot firmness. SPLN mice also displayed a significant increase in ADP- and AA-mediated platelet aggregability compared to untouched controls, SMB, and SPLN + SMB. ASA significantly decreased platelet aggregation via both ADP and AA signaling in SPLN and SPLN + SMB cohorts without affecting viscoelastic coagulation testing. CONCLUSIONS: Platelet hyperaggregability after SPLN is mediated by both ADP and AA signaling. Early aspirin administration may prevent increased platelet aggregation exacerbated after polytrauma.


Assuntos
Aspirina , Esplenectomia , Animais , Camundongos , Difosfato de Adenosina/farmacologia , Ácido Araquidônico , Aspirina/farmacologia , Plaquetas , Modelos Animais de Doenças , Agregação Plaquetária/fisiologia , Inibidores da Agregação Plaquetária , Testes de Função Plaquetária , Esplenectomia/efeitos adversos
19.
Am J Surg ; 224(5): 1319-1323, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35781374

RESUMO

BACKGROUND: The benefit of a balanced resuscitation in low volume transfusions remains unclear This study is aimed at characterizing blood product ratios in this cohort. METHODS: A retrospective analysis (2017-2019) of the ACS TQIP was performed to identify adult trauma patients who received ≥1 unit of packed red blood cells (pRBCs) 4 and 24 h after admission. Blood products received were used to calculate plasma and platelet ratios. RESULTS: Plasma and platelet ratios were closer to the target 1:1 ratio for ≤4 units pRBCs. Plasma and platelet ratios increased for those receiving ≤10 units pRBCs, demonstrating increasingly unbalanced resuscitation. Transfusion ratios were unbalanced for those receiving ≥5 units pRBC. CONCLUSION: Transfusion ratios were closer to the desired transfusion ratio for low volume blood product resuscitation. In those receiving ≥5 units pRBC, plasma and platelet ratios were not balanced. The optimal transfusion ratio in low volume trauma resuscitation is unknown.


Assuntos
Transfusão de Sangue , Ferimentos e Lesões , Adulto , Humanos , Estudos Retrospectivos , Ressuscitação , Plasma , Plaquetas , Ferimentos e Lesões/terapia
20.
Shock ; 57(6): 291-298, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759308

RESUMO

INTRODUCTION: "Endotheliopathy of trauma" is recognized as endothelial dysfunction following traumatic injury leading to poor patient outcomes. Acute post-traumatic disruptions in endothelial cell function have been associated with profound physiologic, hemodynamic, and coagulation derangements. The goal of this study was to define the generation and extent of endotheliopathy in murine polytrauma models by evaluating the post-traumatic release of serum biomarkers of ongoing cellular injury. METHODS: Mice were randomized to undergo moderately severe concussive TBI by weight drop, 60-min hemorrhagic shock to MAP 25 mmHg with subsequent resuscitation with Lactated Ringer's, submandibular bleed (SMB), and/or midline laparotomy with rectus muscle crush. Mice were sacrificed at 1, 4, or 24 h for serum biomarker evaluation. RESULTS: Serum biomarkers revealed differential timing of elevation and injury-dependent release.At 24 h, soluble thrombomodulin was significantly elevated in combined TBI + shock + lap crush compared to untouched, and shock alone. Syndecan-1 levels were significantly elevated after shock 1 to 24 h compared to untouched cohorts with a significant elevation in TBI + shock + lap crush 24 h after injury compared to shock alone. UCHL-1 was significantly elevated in shock mice at 1 to 24 h post-injury compared to untouched mice. UCHL-1 was also significantly elevated in the TBI + shock cohort 24 h after injury compared to shock alone. Hyaluronic acid release at 4 h was significantly elevated in shock alone compared to the untouched cohort with further elevations in TBI + shock + lap crush and TBI + shock compared to shock alone at 24 h. Hyaluronic acid was also increased in lap crush and laparotomy only cohort compared to untouched mice 24 h after injury. CONCLUSIONS: A murine model of polytrauma including TBI, hemorrhagic shock, and laparotomy abdominal crush is a reliable method for evaluation of endotheliopathy secondary to trauma as indicated by differential changes in serum biomarkers.


Assuntos
Traumatismo Múltiplo , Choque Hemorrágico , Animais , Biomarcadores , Ácido Hialurônico , Camundongos , Ressuscitação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...