Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4419, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31548599

RESUMO

We would like to make our readers aware of the publication by Cohen et al., which reports irrational behaviour in C. elegans olfactory preference[1] . These complementary studies establish C. elegans as a model system to explore the neural mechanisms of decision making.

2.
Nat Commun ; 10(1): 3202, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324786

RESUMO

C. elegans worms exhibit a natural chemotaxis towards food cues. This provides a potential platform to study the interactions between stimulus valence and innate behavioral preferences. Here we perform a comprehensive set of choice assays to measure worms' relative preference towards various attractants. Surprisingly, we find that when facing a combination of choices, worms' preferences do not always follow value-based hierarchy. In fact, the innate chemotaxis behavior in worms robustly violates key rationality paradigms of transitivity, independence of irrelevant alternatives and regularity. These violations arise due to asymmetric modulatory effects between the presented options. Functional analysis of the entire chemosensory system at a single-neuron resolution, coupled with analyses of mutants, defective in individual neurons, reveals that these asymmetric effects originate in specific sensory neurons.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Quimiotaxia/fisiologia , Células Receptoras Sensoriais/fisiologia , Animais , Sinais (Psicologia) , Tomada de Decisões/fisiologia , Modelos Biológicos
3.
Curr Biol ; 29(10): 1573-1583.e4, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31056393

RESUMO

Organisms' capacity to anticipate future conditions is key for survival. Associative memories are instrumental for learning from past experiences, yet little is known about the processes that follow memory retrieval and their potential advantage in preparing for impending developments. Here, using C. elegans nematodes, we demonstrate that odor-evoked retrieval of aversive memories induces rapid and protective stress responses, which increase animal survival prospects when facing imminent adversities. The underlying mechanism relies on two sensory neurons: one is necessary during the learning period, and the other is necessary and sufficient for memory retrieval. Downstream of memory reactivation, serotonin secreted from two head neurons mediates the systemic stress response. Thus, evoking stressful memories, stored within individual sensory neurons, allows animals to anticipate upcoming dire conditions and provides a head start to initiate rapid and protective responses that ultimately increase animal fitness.


Assuntos
Caenorhabditis elegans/fisiologia , Memória , Odorantes , Células Receptoras Sensoriais/fisiologia , Adaptação Fisiológica , Animais
4.
Front Aging Neurosci ; 7: 71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042029

RESUMO

AIM: Systemic pharmacotherapies have limitation due to blood-labyrinth barrier, so local delivery via the round window membrane opens a path for effective treatment. Multifunctional nanoparticle (NP)-mediated cell specific drug delivery may enhance efficacy and reduce side effects. Different NPs with ligands to target TrkB receptor were tested. Distribution, uptake mechanisms, trafficking, and bioefficacy of drug release of rolipram loaded NPs were evaluated. METHODS: We tested lipid based nanocapsules (LNCs), Quantum Dot, silica NPs with surface modification by peptides mimicking TrkB or TrkB activating antibodies. Bioefficacy of drug release was tested with rolipram loaded LNCs to prevent cisplatin-induced apoptosis. We established different cell culture models with SH-SY-5Y and inner ear derived cell lines and used neonatal and adult mouse explants. Uptake and trafficking was evaluated with FACS and confocal as well as transmission electron microscopy. RESULTS: Plain NPs show some selectivity in uptake related to the in vitro system properties, carrier material, and NP size. Some peptide ligands provide enhanced targeted uptake to neuronal cells but failed to show this in cell cultures. Agonistic antibodies linked to silica NPs showed TrkB activation and enhanced binding to inner ear derived cells. Rolipram loaded LNCs proved as effective carriers to prevent cisplatin-induced apoptosis. DISCUSSION: Most NPs with targeting ligands showed limited effects to enhance uptake. NP aggregation and unspecific binding may change uptake mechanisms and impair endocytosis by an overload of NPs. This may affect survival signaling. NPs with antibodies activate survival signaling and show effective binding to TrkB positive cells but needs further optimization for specific internalization. Bioefficiacy of rolipram release confirms LNCs as encouraging vectors for drug delivery of lipophilic agents to the inner ear with ideal release characteristics independent of endocytosis.

5.
Dev Neurobiol ; 75(3): 217-31, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25104556

RESUMO

Sprouty (Spry) proteins are negative feedback inhibitors of receptor tyrosine kinase signaling. Downregulation of Spry2 has been demonstrated to promote elongative axon growth of cultured peripheral and central neurons. Here, we analyzed Spry2 global knockout mice with respect to axon outgrowth in vitro and peripheral axon regeneration in vivo. Neurons dissociated from adult Spry2 deficient sensory ganglia revealed stronger extracellular signal-regulated kinase activation and enhanced axon outgrowth. Prominent axon elongation was observed in heterozygous Spry2(+/-) neuron cultures, whereas homozygous Spry2(-/-) neurons predominantly exhibited a branching phenotype. Following sciatic nerve crush, Spry2(+/-) mice recovered faster in motor but not sensory testing paradigms (Spry2(-/-) mice did not tolerate anesthesia required for nerve surgery). We attribute the improvement in the rotarod test to higher numbers of myelinated fibers in the regenerating sciatic nerve, higher densities of motor endplates in hind limb muscles and increased levels of GAP-43 mRNA, a downstream target of extracellular regulated kinase signaling. Conversely, homozygous Spry2(-/-) mice revealed enhanced mechanosensory function (von Frey's test) that was accompanied by an increased innervation of the epidermis, elevated numbers of nonmyelinated axons and more IB4-positive neurons in dorsal root ganglia. The present results corroborate the functional significance of receptor tyrosine kinase signaling inhibitors for axon outgrowth during development and nerve regeneration and propose Spry2 as a novel potential target for pharmacological inhibition to accelerate long-distance axon regeneration in injured peripheral nerves.


Assuntos
Axônios/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Proteínas de Membrana/deficiência , Regeneração Nervosa/genética , Neurônios/metabolismo , Animais , Proteína GAP-43/metabolismo , Heterozigoto , Homozigoto , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Knockout , Atividade Motora/fisiologia , Regeneração Nervosa/fisiologia , Proteínas Serina-Treonina Quinases , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/lesões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...