Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202405849, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779989

RESUMO

Nitridophosphates, with their primary structural motif of isolated or condensed PN4 tetrahedra, meet many requirements for high performance materials. Their properties are associated with their structural diversity, which is mainly limited by this specific building block. Herein, we present the alkaline earth metal nitridophosphate oxide Ba3[PN3]O featuring a trigonal planar [PN3]4- anion. Ba3[PN3]O was obtained using a hot isostatic press by medium-pressure high-temperature synthesis (MP/HT) at 200 MPa and 880 °C. The crystal structure was solved and refined from single-crystal X-ray diffraction data in space group R-3c (no.167) and confirmed by SEM-EDX, magic angle spinning (MAS) NMR, vibrational spectroscopy (Raman, IR) and low-cost crystallographic calculations (LCC). MP/HT synthesis reveals great potential by extending the structural chemistry of P to include trigonal planar [PN3]4- motifs.

2.
Angew Chem Int Ed Engl ; 63(23): e202403648, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567876

RESUMO

Tetrahedron-based nitrides offer a wide range of properties and applications. Highly condensed nitridophosphates are examples of nitrides that exhibit fascinating luminescence properties when doped with Eu2+, making them appealing for industrial applications. Here, we present the first nitridomagnesophosphate solid solution series Ba3-xSrx[Mg2P10N20] : Eu2+ (x=0-3), synthesized by a high-pressure high-temperature approach using the multianvil technique (3 GPa, 1400 °C). Starting from the binary nitrides P3N5 and Mg3N2 and the respective alkaline earth azides, we incorporate Mg into the P/N framework to increase the degree of condensation κ to 0.6, the highest observed value for alkaline earth nitridophosphates. The crystal structure was elucidated by single-crystal X-ray diffraction, powder X-ray diffraction, energy-dispersive X-ray spectroscopy (EDX), and solid-state NMR. DFT calculations were performed on the title compounds and other related highly condensed nitridophosphates to investigate the influence of Mg in the P/N network. Eu2+-doped samples of the solid solution series show a tunable narrow-band emission from cyan to green (492-515 nm), which is attributed to the preferred doping of a single crystallographic site. Experimental confirmation of this assumption was provided by overdoping experiments and STEM-HAADF studies on the series as well on the stoichiometric compound Ba2Eu[Mg2P10N20] with additional atomic resolution energy-dispersive X-ray spectroscopy (EDX) mapping.

3.
Chemistry ; 30(29): e202400766, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38483015

RESUMO

A series of isostructural imidonitridophosphates AE2AlP8N15(NH) (AE=Ca, Sr, Ba) was synthesized at high-pressure/high-temperature conditions (1400 °C and 5-9 GPa) from alkaline-earth metal nitrides or azides Ca3N2/Sr(N3)2/Ba(N3)2 and the binary nitrides AlN and P3N5. NH4F served as a hydrogen source and mineralizing agent. The crystal structures were determined by single-crystal X-ray diffraction and feature a three-dimensional network of vertex-sharing PN4-tetrahedra forming diverse-sized rings that are occupied by aluminum and alkaline earth ions. These structures represent another example of nitridophosphate-based networks that simultaneously incorporate AlN6-octahedra and alkaline-earth-centered polyhedra, with aluminum not participating in the tetrahedra network. They differ from previously reported ones by incorporating non-condensed octahedra instead of strongly condensed octahedra units and contribute to the diversity of multicationic nitridophosphate network structures. The results are supported by atomic resolution EDX mapping, solid-state NMR and FTIR measurements. Eu2+-doped samples show strong luminescence with narrow emissions in the range of green to blue under UV excitation, marking another instance of Eu2+-luminescence within imidonitridophosphates.

4.
Inorg Chem ; 63(7): 3535-3543, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38324917

RESUMO

High-pressure, high-temperature (HP/HT) syntheses are essential for modern high-performance materials. Phosphorus nitride, nitridophosphate, and more generally nitride syntheses benefit greatly from HP/HT conditions. In this contribution, we present the first systematic in situ investigation of a nitridophosphate HP/HT synthesis using the reaction of zinc nitride Zn3N2 and phosphorus(V) nitride P3N5 to the nitride semiconductor Zn2PN3 as a case study. At a pressure of 8 GPa and temperatures up to 1300 °C, the reaction was monitored by energy-dispersive powder X-ray diffraction (ED-PXRD) in a large-volume press at beamline P61B at DESY. The experiments investigate the general behavior of the starting materials under extreme conditions and give insight into the reaction. During cold compression and subsequent heating, the starting materials remain crystalline above their ambient-pressure decomposition points, until a sufficient minimum temperature is reached and the reaction starts. The reaction proceeds via ion diffusion at grain boundaries with an exponential decay in the reaction rate. Raising the temperature above the minimum required value quickly completes the reaction and initiates single-crystal growth. After cooling and decompression, which did not influence the resulting product, the recovered sample was analyzed by energy-dispersive X-ray (EDX) spectroscopy.

5.
Chemistry ; 29(41): e202301218, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37205841

RESUMO

Oxonitridophosphates exhibit the potential for broad structural diversity, making them promising host-compounds in phosphor-converted light-emitting diode applications. The novel monophyllo-oxonitridophosphate ß-MgSrP3 N5 O2 was obtained by using the high-pressure multianvil technique. The crystal structure was solved and refined based on single-crystal X-ray diffraction data and confirmed by powder X-ray diffraction. ß-MgSrP3 N5 O2 crystallizes in the orthorhombic space group Cmme (no. 67, a=8.8109(6), b=12.8096(6), c=4.9065(3) Å, Z=4) and has a structure related to that of Ba2 CuSi2 O7 . DFT calculations were performed to investigate the phase transition from α- to ß-MgSrP3 N5 O2 and to confirm the latter as the corresponding high-pressure polymorph. Furthermore, the luminescence properties of Eu2+ doped samples of both polymorphs were investigated and discussed, showing blue and cyan emission, respectively (α-MgSrP3 N5 O2 ; λmax =438 nm, fwhm=46 nm/2396 cm-1 ; ß-MgSrP3 N5 O2 ; λmax =502 nm, fwhm=42 nm/1670 cm-1 ).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...