Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(9): 9974-9990, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463282

RESUMO

Gum ghatti, popularly known as Indian gum and obtained from Anogeissus latifolia, is a complex high-molecular-weight, water-soluble, and swellable nonstarch polysaccharide comprised of magnesium and calcium salts of ghattic acids and multiple monosugars. Unlike other nontimber forest produce, gums ghatti is a low-volume but high-value product. It has several applications and is widely used as food, in pharmaceuticals, and for wastewater treatment and hydrogel formation, and it has attracted a great deal of attention in the fields of energy, environmental science, and nanotechnology. Industrial applications of gum ghatti are primarily due to its excellent emulsification, stabilization, thickening, heat tolerance, pH stability, carrier, and biodegradable properties. However, utilization of gum ghatti is poorly explored and implemented due to a lack of knowledge of its production, processing, and properties. Nevertheless, there has been interest among investigators in recent times for exploring its production, processing, molecular skeleton, and functional properties. This present review focuses on production scenarios, processing aspects, structural and functional properties, and potential applications in the food, pharmaceuticals, nonfood, and other indigenous and industrial usages.

2.
Org Biomol Chem ; 21(48): 9659-9668, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38038241

RESUMO

Lewis-acid cascade reactions promoted by BF3·OEt2 are reported for the synthesis of highly substituted pyrrolo[1,2-a]indoles and congeners of benzofuro[2,3-b]indoles. These reactions are highly regio- and diastereoselective towards generating up to five contiguous stereogenic centers, including two vicinal quaternary centers. Furthermore, an established cascade approach and the mechanism proposed herein are well supported by quantum chemistry calculations. In addition, a self-dimerization intermediate was trapped and isolated to establish a strategy for potential access to both pyrrolo and benzo indole derivatives, leaving sufficient freedom for broadening. Furthermore, in-silico molecular docking and all atomistic molecular dynamic (MD) simulation analysis suggests that the synthesized pyrrolo[1,2-a]indole derivatives stably bind at the active site of the mycobacterial secreted tyrosine phosphatase B (MptpB) enzyme, an emerging anti-mycobacterial drug target. Deep learning-based affinity predictions and MMPBGBSA-based energy calculations of the docked poses are presented herein.

3.
J Am Soc Mass Spectrom ; 34(4): 710-719, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951239

RESUMO

Isoxazoles are an important class of organic compounds widely employed in synthesis and drug design. Fragmentation chemistry of the parent isoxazole molecule and its substituents has been the subject of several experimental and theoretical investigations. Collision induced dissociation (CID) of isoxazole and its substituents has been studied experimentally under negative ion conditions. Based on the observed reaction products, dissociation patterns were proposed. In the present work, we studied the dissociation chemistry of deprotonated isoxazole and 3-methyl isoxazole using electronic structure theory calculations and direct chemical dynamics simulations. Various deprotonated isomers of these molecules were activated by collision with an Ar atom, and the ensuing fractionation patterns were studied using on-the-fly classical trajectory simulations at the density functional B3LYP/6-31+G* level of electronic structure theory. A variety of reaction products and pathways were observed, and it was found that a nonstatistical shattering mechanism dominates the CID dynamics of these molecules. Simulation results are compared with experiments, and detailed atomic level dissociation mechanisms are presented.

4.
Curr Microbiol ; 79(2): 53, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982252

RESUMO

The present study was performed to evaluate the efficacy of selected potential nitrogen-fixing cyanobacterial strain (Anabaena sp.), isolated from rhizospheric soil of rice plants on growth, pigments, N uptake, root architecture, and image-based phenotypic traits of rice crop using co-cultivation approach under controlled sand culture conditions. We studied the beneficial interaction of cyanobacterium to rice using sensor image-based Phenomics approach as well as conventional methods. Co-cultivation experiment revealed that inoculation with Anabaena sp. significantly improved plant growth, chlorophyll, leaf area, % nitrogen, and protein of rice by ~ 70%, ~ 22%, ~ 60%, and ~ 25% under 100% nitrogen input in comparison with un-inoculated control. Further, comparative evaluation revealed superior performance of Anabaena sp. at 100% and 75% N followed by 50% N input improving below-ground parameters as well as phenotypic traits as compared to control treatment. Hence, inoculation performed better with inorganic nitrogen input for overall growth of rice crop. Therefore, cyanobacterial strain can be used as an efficient bio-inoculant for sustainable rice production under integrated nutrient management.


Assuntos
Cianobactérias , Oryza , Nitrogênio , Fixação de Nitrogênio , Microbiologia do Solo
5.
Plant Physiol Biochem ; 139: 419-427, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30986643

RESUMO

Oxidative stress generates reactive oxygen species which causes cell damage of living organisms and are normally detoxified by antioxidants. Indirect reports signify the damages caused by reactive oxygen species and neutralized by antioxidant, but the direct evidence to confirm this hypothesis is still unclear. To validate our hypothesis, an attempt was made in a diazotrophic bacterium (Azotobacter chroococcum Avi2) as a biological system, and hydrogen peroxide (H2O2) and ascorbic acid were used as oxidative stress and antioxidant supplement, respectively. Additionally, rice plant-growth attributes by Avi2 was also assessed under H2O2 and ascorbic acid. Results indicated that higher concentration of H2O2 (2.5 mM-4.5 mM) showed the complete mortality of Avi2, whereas one ppm ascorbic acid neutralized the effect of H2O2. Turbidity, colony forming unit, DNA quantity, nifH gene abundance, indole acetic acid and ammonia productions were significantly (p < 0.5) increased by 11.93%, 17.29%, 19.80%, 74.77%, 71.89%, and 42.53%, respectively in Avi2-treated with 1.5 mM H2O2 plus ascorbic acid compared to 1.5 mM H2O2 alone. Superoxide dismutase was significantly (p < 0.5) increased by 60.85%, whereas catalase and ascorbate peroxidase activities were significantly (p < 0.05) decreased by 64.28% and 68.88% in Avi2-treated with 1.5 mM H2O2 plus ascorbic acid compared to 1.5 mM H2O2 alone. Germination percentage of three rice cultivars (FR13a, Naveen and Sahbhagi dhan) were significantly (p < 0.5) increased by 20%, 13.33%, and 4%, respectively in Avi2-treated with 0.6 mM H2O2 plus ascorbic acid compared with uninoculated control. Overall, this study indicated that ascorbic acid formulation neutralizes the H2O2-oxidative stress and enhances the survivability and plant growth-promoting efficacy of A. chroococcum Avi2 and therefore, it may be used as an effective formulation of bio-inoculants in rice under oxidative stress.


Assuntos
Ácido Ascórbico/farmacologia , Azotobacter/fisiologia , Fixação de Nitrogênio/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Antioxidantes , Peróxido de Hidrogênio/farmacologia , Fixação de Nitrogênio/fisiologia , Oryza/metabolismo , Estresse Oxidativo/efeitos dos fármacos
6.
Planta ; 249(5): 1435-1447, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30684037

RESUMO

MAIN CONCLUSION: Illumina-Miseq®-based cyanobiont diversity and biomass were analyzed in six Azolla spp. Results revealed that 93-98% of total operational taxonomic units (OTUs) belong to Nostacaceae followed by Cylindrospermopsis with about 1-6% OTUs. The taxonomy of Azolla-cyanobiont is a long-term debate within the scientific community. Morphological and biochemical-based reports indicated the presence of Anabaena, Nostoc and/or Trichormus azollae as abundant Azolla-cyanobionts, however, molecular data did not support the abundance of Anabaena and/or Nostoc. To understand furthermore, the cyanobiont diversity in six species of Azolla (A. microphylla, A. mexicana, A. filiculoides, A. caroliniana, A. pinnata and A. rubra) was analyzed based on 16S rRNA Illumina-MiSeq sequencing. Additionally, biomass and nutrient profiling of Azolla spp. were analyzed and correlated with cyanobiont diversity. Illumina-MiSeq data revealed that 99.6-99.9% of total operational taxonomic units (OTUs) belonged to Nostocophycideae (class), Nostocales (order) and Nostacaceae (family). At genus level, the unassigned affiliation (93.4-97.9%) under Nostacaceae family was abundant followed by Cylindrospermopsis OTUs (1.1-6.0%). Interestingly, A. pinnata harboured maximum Cylindrospermopsis OTUs and also recorded higher biomass (40.67 g m-2 day-1), whereas crude protein (25.9%) and antioxidants (76.9%) were recorded to be higher in A. microphylla. Biplot analysis revealed that A. pinnata and its cyanobiont abundance were positively correlated with neutral and acid detergent fibers. Overall, the present findings deepened the understanding about cyanobiont in Azolla and its relations with Azolla nutrient profiling.


Assuntos
Aspergillus/metabolismo , Anabaena/metabolismo , Antioxidantes/metabolismo , Cianobactérias/metabolismo , RNA Ribossômico 16S/metabolismo , Simbiose/fisiologia
7.
Microbiol Res ; 171: 78-89, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25644956

RESUMO

Rice plants are selective with their associations with bacteria that are beneficial for growth, nutrient uptake, exhibit induced resistance or antagonism towards pathogens. Cyanobacteria as bioinoculants are known to promote the growth and health of rice plants. The present investigation was aimed at understanding whether and how cyanobacterial (Calothrix elenkinii) inoculation influenced the rice plant growth and the culturable bacterial populations and identifying the dominant culturable "microbiome" members. The plant tissue extracts were used to enumerate populations of the culturable microbiome members using selected enrichment media with different nutrient levels. About 10-fold increases in population densities of culturable microbiome members in different media were recorded, with some isolates having metabolic potential for nitrogen fixation and phosphorus solubilization. Fatty acid methyl ester (FAME) analysis and 16S rRNA sequencing of selected microbial morphotypes suggested the predominance of the members of Bacillaceae. Significant increases in plant growth attributes, nitrogenase activity and indole acetic acid production, and activities of hydrolytic and defense enzymes were recorded in the Calothrix inoculated plants. The PCR-based analysis and scanning electron microscopic (SEM) observations confirmed the presence of inoculated cyanobacterium inside the plant tissues. This investigation illustrated that cyanobacterial inoculation can play significant roles in improving growth and metabolism of rice directly and interact with the beneficial members from the endophytic microbiome of rice seedlings synergistically.


Assuntos
Cianobactérias/genética , Metagenoma , Microbiota , Oryza/microbiologia , Biodiversidade , Evolução Biológica , Clorofila/metabolismo , Cianobactérias/classificação , Cianobactérias/metabolismo , Cianobactérias/ultraestrutura , Impressões Digitais de DNA , Ácidos Graxos/metabolismo , Ácidos Indolacéticos/metabolismo , Nitrogenase/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Filogenia , Raízes de Plantas/microbiologia , Brotos de Planta/microbiologia , RNA Ribossômico 16S/genética , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...