Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262343

RESUMO

MOTIVATION: Recent advancements in long-read RNA sequencing have enabled the examination of full-length isoforms, previously uncaptured by short-read sequencing methods. An alternative powerful method for studying isoforms is through the use of barcoded short-read RNA reads, for which a barcode indicates whether two short-reads arise from the same molecule or not. Such techniques included the 10x Genomics linked-read based SParse Isoform Sequencing (SPIso-seq), as well as Loop-Seq, or Tell-Seq. Some applications, such as novel-isoform discovery, require very high coverage. Obtaining high coverage using long reads can be difficult, making barcoded RNA-seq data a valuable alternative for this task. However, most annotation pipelines are not able to work with a set of short reads instead of a single transcript, also not able to work with coverage gaps within a molecule if any. In order to overcome this challenge, we present an RNA-seq assembler that allows the determination of the expressed isoform per barcode. RESULTS: In this article, we present cloudrnaSPAdes, a tool for assembling full-length isoforms from barcoded RNA-seq linked-read data in a reference-free fashion. Evaluating it on simulated and real human data, we found that cloudrnaSPAdes accurately assembles isoforms, even for genes with high isoform diversity. AVAILABILITY AND IMPLEMENTATION: cloudrnaSPAdes is a feature release of a SPAdes assembler and version used for this article is available at https://github.com/1dayac/cloudrnaSPAdes-release.


Assuntos
Genômica , RNA , Humanos , RNA/genética , Análise de Sequência de RNA/métodos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA-Seq , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma
2.
bioRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546844

RESUMO

Motivation: Recent advancements in long-read RNA sequencing have enabled the examination of full-length isoforms, previously uncaptured by short-read sequencing methods. An alternative powerful method for studying isoforms is through the use of barcoded short-read RNA reads, for which a barcode indicates whether two short-reads arise from the same molecule or not. Such techniques included the 10x Genomics linked-read based SParse Isoform Sequencing (SPIso-seq), as well as Loop-Seq, or Tell-Seq. Some applications, such as novel-isoform discovery, require very high coverage. Obtaining high coverage using long reads can be difficult, making barcoded RNA-seq data a valuable alternative for this task. However, most annotation pipelines are not able to work with a set of short reads instead of a single transcript, also not able to work with coverage gaps within a molecule if any. In order to overcome this challenge, we present an RNA-seq assembler allowing the determination of the expressed isoform per barcode. Results: In this paper, we present cloudrnaSPAdes, a tool for assembling full-length isoforms from barcoded RNA-seq linked-read data in a reference-free fashion. Evaluating it on simulated and real human data, we found that cloudrnaSPAdes accurately assembles isoforms, even for genes with high isoform diversity. Availability: cloudrnaSPAdes is a feature release of a SPAdes assembler and available at https://cab.spbu.ru/software/cloudrnaspades/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA