Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; : 100890, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38566416

RESUMO

Plant-specific transcriptional regulators called TELOMERE REPEAT BINDING proteins (TRBs) combine two DNA-binding domains, the GH1 domain, which binds to linker DNA and is shared with H1 histones, and the Myb/SANT domain, which specifically recognizes the telobox DNA-binding site motif. TRB1, TRB2, and TRB3 proteins recruit Polycomb group complex 2 (PRC2) to deposit H3K27me3 and JMJ14 to remove H3K4me3 at gene promoters containing telobox motifs to repress transcription. Here, we demonstrate that TRB4 and TRB5, two related paralogs belonging to a separate TRB clade conserved in spermatophytes, regulate the transcription of several hundred genes involved in developmental responses to environmental cues. TRB4 binds to several thousand sites in the genome, mainly at transcription start sites and promoter regions of transcriptionally active and H3K4me3-marked genes, but, unlike TRB1, it is not enriched at H3K27me3-marked gene bodies. However, TRB4 can physically interact with the catalytic components of PRC2, SWINGER, and CURLY LEAF (CLF). Unexpectedly, we show that TRB4 and TRB5 are required for distinctive phenotypic traits observed in clf mutant plants and thus function as transcriptional activators of several hundred CLF-controlled genes, including key flowering genes. We further demonstrate that TRB4 shares multiple target genes with TRB1 and physically and genetically interacts with members of both TRB clades. Collectively, these results reveal that TRB proteins engage in both positive and negative interactions with other members of the family to regulate plant development through both PRC2-dependent and -independent mechanisms.

2.
Plant Cell ; 35(12): 4284-4303, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37738557

RESUMO

The nucleoskeleton forms a filamentous meshwork under the nuclear envelope and contributes to the regulation of nuclear shape and gene expression. To understand how the Arabidopsis (Arabidopsis thaliana) nucleoskeleton physically connects to the nuclear periphery in plants, we investigated the Arabidopsis nucleoskeleton protein KAKU4 and sought for functional regions responsible for its localization at the nuclear periphery. We identified 3 conserved peptide motifs within the N-terminal region of KAKU4, which are required for intermolecular interactions of KAKU4 with itself, interaction with the nucleoskeleton protein CROWDED NUCLEI (CRWN), localization at the nuclear periphery, and nuclear elongation in differentiated tissues. Unexpectedly, we find these motifs to be present also in NUP82 and NUP136, 2 plant-specific nucleoporins from the nuclear pore basket. We further show that NUP82, NUP136, and KAKU4 have a common evolutionary history predating nonvascular land plants with KAKU4 mainly localizing outside the nuclear pore suggesting its divergence from an ancient nucleoporin into a new nucleoskeleton component. Finally, we demonstrate that both NUP82 and NUP136, through their shared N-terminal motifs, interact with CRWN and KAKU4 proteins revealing the existence of a physical continuum between the nuclear pore and the nucleoskeleton in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Poro Nuclear/genética , Poro Nuclear/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Motivos de Aminoácidos , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Matriz Nuclear/metabolismo
3.
Cell Rep ; 42(8): 112894, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37515769

RESUMO

While the pivotal role of linker histone H1 in shaping nucleosome organization is well established, its functional interplays with chromatin factors along the epigenome are just starting to emerge. Here we show that, in Arabidopsis, as in mammals, H1 occupies Polycomb Repressive Complex 2 (PRC2) target genes where it favors chromatin condensation and H3K27me3 deposition. We further show that, contrasting with its conserved function in PRC2 activation at genes, H1 selectively prevents H3K27me3 accumulation at telomeres and large pericentromeric interstitial telomeric repeat (ITR) domains by restricting DNA accessibility to Telomere Repeat Binding (TRB) proteins, a group of H1-related Myb factors mediating PRC2 cis recruitment. This study provides a mechanistic framework by which H1 avoids the formation of gigantic H3K27me3-rich domains at telomeric sequences and contributes to safeguard nucleus architecture.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/genética , Telômero/metabolismo , Mamíferos/metabolismo
4.
Plant J ; 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36700345

RESUMO

Controlled transcription of genes is critical for cell differentiation and development. Gene expression regulation therefore involves a multilayered control from nucleosome composition in histone variants and their post-translational modifications to higher-order folding of chromatin fibers and chromatin interactions in nuclear space. Recent technological advances have allowed gaining insight into these mechanisms, the interplay between local and higher-order chromatin organization, and the dynamic changes that occur during stress response and developmental transitions. In this review, we will discuss chromatin organization from the nucleosome to its three-dimensional structure in the nucleus, and consider how these different layers of organization are maintained during the cell cycle or rapidly reprogrammed during development.

5.
Nat Commun ; 14(1): 469, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709329

RESUMO

The complex and dynamic three-dimensional organization of chromatin within the nucleus makes understanding the control of gene expression challenging, but also opens up possible ways to epigenetically modulate gene expression. Because plants are sessile, they evolved sophisticated ways to rapidly modulate gene expression in response to environmental stress, that are thought to be coordinated by changes in chromatin conformation to mediate specific cellular and physiological responses. However, to what extent and how stress induces dynamic changes in chromatin reorganization remains poorly understood. Here, we comprehensively investigated genome-wide chromatin changes associated with transcriptional reprogramming response to heat stress in tomato. Our data show that heat stress induces rapid changes in chromatin architecture, leading to the transient formation of promoter-enhancer contacts, likely driving the expression of heat-stress responsive genes. Furthermore, we demonstrate that chromatin spatial reorganization requires HSFA1a, a transcription factor (TF) essential for heat stress tolerance in tomato. In light of our findings, we propose that TFs play a key role in controlling dynamic transcriptional responses through 3D reconfiguration of promoter-enhancer contacts.


Assuntos
Resposta ao Choque Térmico , Solanum lycopersicum , Resposta ao Choque Térmico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica , Cromatina/genética , Solanum lycopersicum/genética
6.
Curr Opin Plant Biol ; 69: 102266, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35981458

RESUMO

The organization of DNA with histone proteins into chromatin is fundamental for the regulation of gene expression. Incorporation of different histone variants into the nucleosome together with post-translational modifications of these histone variants allows modulating chromatin accessibility and contributes to the establishment of functional chromatin states either permissive or repressive for transcription. This review highlights emerging mechanisms required to deposit or evict histone variants in a timely and locus-specific manner. This review further discusses how assembly of specific histone variants permits to reinforce transmission of chromatin states during replication, to maintain heterochromatin organization and stability and to reprogram existing epigenetic information.


Assuntos
Cromatina , Histonas , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Heterocromatina , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Plantas/genética , Plantas/metabolismo
7.
Genome Res ; 31(7): 1230-1244, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34083408

RESUMO

In animals, distant H3K27me3-marked Polycomb targets can establish physical interactions forming repressive chromatin hubs. In plants, growing evidence suggests that H3K27me3 acts directly or indirectly to regulate chromatin interactions, although how this histone modification modulates 3D chromatin architecture remains elusive. To decipher the impact of the dynamic deposition of H3K27me3 on the Arabidopsis thaliana nuclear interactome, we combined genetics, transcriptomics, and several 3D epigenomic approaches. By analyzing mutants defective for histone H3K27 methylation or demethylation, we uncovered the crucial role of this chromatin mark in short- and previously unnoticed long-range chromatin loop formation. We found that a reduction in H3K27me3 levels led to a decrease in the interactions within Polycomb-associated repressive domains. Regions with lower H3K27me3 levels in the H3K27 methyltransferase clf mutant established new interactions with regions marked with H3K9ac, a histone modification associated with active transcription, indicating that a reduction in H3K27me3 levels induces a global reconfiguration of chromatin architecture. Altogether, our results reveal that the 3D genome organization is tightly linked to reversible histone modifications that govern chromatin interactions. Consequently, nuclear organization dynamics shapes the transcriptional reprogramming during plant development and places H3K27me3 as a key feature in the coregulation of distant genes.

8.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919775

RESUMO

Histone chaperones regulate the flow and dynamics of histone variants and ensure their assembly into nucleosomal structures, thereby contributing to the repertoire of histone variants in specialized cells or tissues. To date, not much is known on the distribution of histone variants and their modifications in the dry seed embryo. Here, we bring evidence that genes encoding the replacement histone variant H3.3 are expressed in Arabidopsis dry seeds and that embryo chromatin is characterized by a low H3.1/H3.3 ratio. Loss of HISTONE REGULATOR A (HIRA), a histone chaperone responsible for H3.3 deposition, reduces cellular H3 levels and increases chromatin accessibility in dry seeds. These molecular differences are accompanied by increased seed dormancy in hira-1 mutant seeds. The loss of HIRA negatively affects seed germination even in the absence of HISTONE MONOUBIQUITINATION 1 or TRANSCRIPTION ELONGATION FACTOR II S, known to be required for seed dormancy. Finally, hira-1 mutant seeds show lower germination efficiency when aged under controlled deterioration conditions or when facing unfavorable environmental conditions such as high salinity. Altogether, our results reveal a dependency of dry seed chromatin organization on the replication-independent histone deposition pathway and show that HIRA contributes to modulating seed dormancy and vigor.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Germinação , Chaperonas de Histonas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Cromatina/metabolismo , Epistasia Genética/efeitos dos fármacos , Temperatura Alta , Umidade , Vigor Híbrido , Mutação/genética , Dormência de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Estresse Salino , Fatores de Elongação da Transcrição/metabolismo
9.
Plant Cell ; 33(4): 1135-1150, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33793816

RESUMO

The 45S rRNA genes (rDNA) are among the largest repetitive elements in eukaryotic genomes. rDNA consists of tandem arrays of rRNA genes, many of which are transcriptionally silenced. Silent rDNA repeats may act as 'back-up' copies for ribosome biogenesis and have nuclear organization roles. Through Cas9-mediated genome editing in the Arabidopsis thaliana female gametophyte, we reduced 45S rDNA copy number (CN) to a plateau of ∼10%. Two independent lines had rDNA CNs reduced by up to 90% at the T7 generation, named low copy number (LCN) lines. Despite drastic reduction of rDNA copies, rRNA transcriptional rates, and steady-state levels remained the same as wild-type plants. Gene dosage compensation of rRNA transcript levels was associated with reduction of silencing histone marks at rDNA loci and altered Nucleolar Organiser Region 2 organization. Although overall genome integrity of LCN lines appears unaffected, a chromosome segmental duplication occurred in one of the lines. Transcriptome analysis of LCN seedlings identified several shared dysregulated genes and pathways in both independent lines. Cas9 genome editing of rRNA repeats to generate LCN lines provides a powerful technique to elucidate rDNA dosage compensation mechanisms and impacts of low rDNA CN on genome stability, development, and cellular processes.


Assuntos
Arabidopsis/genética , Mecanismo Genético de Compensação de Dose , Dosagem de Genes , Sistemas CRISPR-Cas , Cromatina/genética , DNA Ribossômico/genética , Regulação da Expressão Gênica de Plantas , Instabilidade Genômica , Plantas Geneticamente Modificadas , RNA Ribossômico/metabolismo
10.
Nucleus ; 11(1): 315-329, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33153359

RESUMO

NucleusJ 1.0, an ImageJ plugin, is a useful tool to analyze nuclear morphology and chromatin organization in plant and animal cells. NucleusJ 2.0 is a new release of NucleusJ, in which image processing is achieved more quickly using a command-lineuser interface. Starting with large collection of 3D nuclei, segmentation can be performed by the previously developed Otsu-modified method or by a new 3D gift-wrapping method, taking better account of nuclear indentations and unstained nucleoli. These two complementary methods are compared for their accuracy by using three types of datasets available to the community at https://www.brookes.ac.uk/indepth/images/ . Finally, NucleusJ 2.0 was evaluated using original plant genetic material by assessing its efficiency on nuclei stained with DNA dyes or after 3D-DNA Fluorescence in situ hybridization. With these improvements, NucleusJ 2.0 permits the generation of large user-curated datasets that will be useful for software benchmarking or to train convolution neural networks.


Assuntos
Nucléolo Celular , Bases de Dados Factuais , Imageamento Tridimensional , Software
12.
J Exp Bot ; 71(17): 5191-5204, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32392582

RESUMO

Organization of the genetic information into chromatin plays an important role in the regulation of all DNA template-based reactions. The incorporation of different variant versions of the core histones H3, H2A, and H2B, or the linker histone H1 results in nucleosomes with unique properties. Histone variants can differ by only a few amino acids or larger protein domains and their incorporation may directly affect nucleosome stability and higher order chromatin organization or indirectly influence chromatin function through histone variant-specific binding partners. Histone variants employ dedicated histone deposition machinery for their timely and locus-specific incorporation into chromatin. Plants have evolved specific histone variants with unique expression patterns and features. In this review, we discuss our current knowledge on histone variants in Arabidopsis, their mode of deposition, variant-specific post-translational modifications, and genome-wide distribution, as well as their role in defining different chromatin states.


Assuntos
Histonas , Nucleossomos , Cromatina/genética , Replicação do DNA , Histonas/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional
13.
Plant J ; 101(1): 71-86, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31463991

RESUMO

Centromeres define the chromosomal position where kinetochores form to link the chromosome to microtubules during mitosis and meiosis. Centromere identity is determined by incorporation of a specific histone H3 variant termed CenH3. As for other histones, escort and deposition of CenH3 must be ensured by histone chaperones, which handle the non-nucleosomal CenH3 pool and replenish CenH3 chromatin in dividing cells. Here, we show that the Arabidopsis orthologue of the mammalian NUCLEAR AUTOANTIGENIC SPERM PROTEIN (NASP) and Schizosaccharomyces pombe histone chaperone Sim3 is a soluble nuclear protein that binds the histone variant CenH3 and affects its abundance at the centromeres. NASPSIM3 is co-expressed with Arabidopsis CenH3 in dividing cells and binds directly to both the N-terminal tail and the histone fold domain of non-nucleosomal CenH3. Reduced NASPSIM3 expression negatively affects CenH3 deposition, identifying NASPSIM3 as a CenH3 histone chaperone.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histonas/metabolismo , Centrômero/metabolismo , Cinetocoros/metabolismo , Schizosaccharomyces/metabolismo
14.
New Phytol ; 221(1): 385-398, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29897636

RESUMO

Developmental phase transitions are often characterized by changes in the chromatin landscape and heterochromatin reorganization. In Arabidopsis, clustering of repetitive heterochromatic loci into so-called chromocenters is an important determinant of chromosome organization in nuclear space. Here, we investigated the molecular mechanisms involved in chromocenter formation during the switch from a heterotrophic to a photosynthetically competent state during early seedling development. We characterized the spatial organization and chromatin features at centromeric and pericentromeric repeats and identified mutant contexts with impaired chromocenter formation. We find that clustering of repetitive DNA loci into chromocenters takes place in a precise temporal window and results in reinforced transcriptional repression. Although repetitive sequences are enriched in H3K9me2 and linker histone H1 before repeat clustering, chromocenter formation involves increasing enrichment in H3.1 as well as H2A.W histone variants, hallmarks of heterochromatin. These processes are severely affected in mutants impaired in replication-coupled histone assembly mediated by CHROMATIN ASSEMBLY FACTOR 1 (CAF-1). We further reveal that histone deposition by CAF-1 is required for efficient H3K9me2 enrichment at repetitive sequences during chromocenter formation. Taken together, we show that chromocenter assembly during post-germination development requires dynamic changes in nucleosome composition and histone post-translational modifications orchestrated by the replication-coupled H3.1 deposition machinery.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Heterocromatina/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Plântula/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Replicação do DNA , Heterocromatina/genética , Histonas/genética , Lisina/metabolismo , Mutação , Plantas Geneticamente Modificadas , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Sequências Repetitivas de Ácido Nucleico , Plântula/genética , Plântula/metabolismo
15.
Front Plant Sci ; 10: 1795, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117348

RESUMO

In June 2019, more than a hundred plant researchers met in Cologne, Germany, for the 6th European Workshop on Plant Chromatin (EWPC). This conference brought together a highly dynamic community of researchers with the common aim to understand how chromatin organization controls gene expression, development, and plant responses to the environment. New evidence showing how epigenetic states are set, perpetuated, and inherited were presented, and novel data related to the three-dimensional organization of chromatin within the nucleus were discussed. At the level of the nucleosome, its composition by different histone variants and their specialized histone deposition complexes were addressed as well as the mechanisms involved in histone post-translational modifications and their role in gene expression. The keynote lecture on plant DNA methylation by Julie Law (SALK Institute) and the tribute session to Lars Hennig, honoring the memory of one of the founders of the EWPC who contributed to promote the plant chromatin and epigenetic field in Europe, added a very special note to this gathering. In this perspective article we summarize some of the most outstanding data and advances on plant chromatin research presented at this workshop.

16.
J Cell Sci ; 131(12)2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941451

RESUMO

The precise location of chromatin domains within the cell nucleus has seen growing recognition in the past decade as an additional mechanism of controlling gene expression in both plants and animals (Dekker et al., 2017). Consequently, international efforts are devoted to understanding the organising principle of this organelle in plants, and notably the nature and the role of functional compartments on gene expression (Graumann et al., 2013; Sotelo-Silveira et al., 2018). The European cooperation 'Impact of Nuclear Domains on Gene Expression and Plant Traits' (INDEPTH) brings together molecular cell biologists, plant physiologists, bioinformaticians, image analysts and computer scientists. They aim to address the question of how nuclear architecture, chromatin organisation and gene expression are connected in plants, particularly in relation to traits of interest such as biomass, reproduction and resistance to pathogens (https://www.brookes.ac.uk/indepth/). The kick-off meeting of the INDEPTH consortium took place in Clermont-Ferrand, France, on 12-14th March 2018, where more than 80 researchers set the agenda for the coming four years of research and collaboration.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Humanos
17.
Nucleic Acids Res ; 46(6): 3019-3033, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29518237

RESUMO

Organized in tandem repeat arrays in most eukaryotes and transcribed by RNA polymerase III, expression of 5S rRNA genes is under epigenetic control. To unveil mechanisms of transcriptional regulation, we obtained here in depth sequence information on 5S rRNA genes from the Arabidopsis thaliana genome and identified differential enrichment in epigenetic marks between the three 5S rDNA loci situated on chromosomes 3, 4 and 5. We reveal the chromosome 5 locus as the major source of an atypical, long 5S rRNA transcript characteristic of an open chromatin structure. 5S rRNA genes from this locus translocated in the Landsberg erecta ecotype as shown by linkage mapping and chromosome-specific FISH analysis. These variations in 5S rDNA locus organization cause changes in the spatial arrangement of chromosomes in the nucleus. Furthermore, 5S rRNA gene arrangements are highly dynamic with alterations in chromosomal positions through translocations in certain mutants of the RNA-directed DNA methylation pathway and important copy number variations among ecotypes. Finally, variations in 5S rRNA gene sequence, chromatin organization and transcripts indicate differential usage of 5S rDNA loci in distinct ecotypes. We suggest that both the usage of existing and new 5S rDNA loci resulting from translocations may impact neighboring chromatin organization.


Assuntos
Arabidopsis/genética , Epigênese Genética , Epigenômica/métodos , Genes de RNAr/genética , Genoma de Planta/genética , RNA Ribossômico 5S/genética , Cromatina/genética , Cromatina/metabolismo , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Translocação Genética
18.
Methods Mol Biol ; 1675: 397-418, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29052204

RESUMO

The long linear chromosomes of eukaryotic organisms are tightly packed into the nucleus of the cell. Beyond a first organization into nucleosomes and higher-order chromatin fibers, the positioning of nuclear DNA within the three-dimensional space of the nucleus plays a critical role in genome function and gene expression. Different techniques have been developed to assess nanoscale chromatin organization, nuclear position of genomic regions or specific chromatin features and binding proteins as well as higher-order chromatin organization. Here, I present an overview of imaging and molecular techniques applied to study nuclear architecture in plants, with special attention to the related protocols published in the "Plant Chromatin Dynamics" edition from Methods in Molecular Biology.


Assuntos
Arabidopsis/metabolismo , Cromatina/química , Arabidopsis/química , Núcleo Celular/química , Núcleo Celular/metabolismo , Cromatina/metabolismo , DNA de Plantas/química , Microscopia de Fluorescência , Conformação Molecular
19.
Methods Mol Biol ; 1675: 481-491, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29052209

RESUMO

Fluorescence in situ hybridization is a standard technique to visualize specific DNA sequences by hybridization with fluorescent probes and, most commonly, relies on DNA probes generated by nick translation. In this chapter, we describe the use of directly labeled LNA-DNA mixmer probes for the rapid detection of repetitive sequences on Arabidopsis thaliana nuclei spreads. We further demonstrate that due to the high thermal stability of the heteroduplexes and the resulting elevated binding affinity of LNA-DNA mixmer probes for their target DNA, these probes can be used to discriminate between repetitive sequences differing by only a few single nucleotide polymorphisms.


Assuntos
Arabidopsis/genética , Cromossomos de Plantas/genética , Sondas de DNA/genética , RNA Ribossômico 5S/genética , DNA Ribossômico/genética , Hibridização in Situ Fluorescente/métodos , Polimorfismo de Nucleotídeo Único , Sequências Repetitivas de Ácido Nucleico
20.
Plant Cell ; 29(7): 1773-1793, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28684426

RESUMO

Histones are essential components of the nucleosome, the major chromatin subunit that structures linear DNA molecules and regulates access of other proteins to DNA. Specific histone chaperone complexes control the correct deposition of canonical histones and their variants to modulate nucleosome structure and stability. In this study, we characterize the Arabidopsis thaliana Alpha Thalassemia-mental Retardation X-linked (ATRX) ortholog and show that ATRX is involved in histone H3 deposition. Arabidopsis ATRX mutant alleles are viable, but show developmental defects and reduced fertility. Their combination with mutants of the histone H3.3 chaperone HIRA (Histone Regulator A) results in impaired plant survival, suggesting that HIRA and ATRX function in complementary histone deposition pathways. Indeed, ATRX loss of function alters cellular histone H3.3 pools and in consequence modulates the H3.1/H3.3 balance in the cell. H3.3 levels are affected especially at genes characterized by elevated H3.3 occupancy, including the 45S ribosomal DNA (45S rDNA) loci, where loss of ATRX results in altered expression of specific 45S rDNA sequence variants. At the genome-wide scale, our data indicate that ATRX modifies gene expression concomitantly to H3.3 deposition at a set of genes characterized both by elevated H3.3 occupancy and high expression. Together, our results show that ATRX is involved in H3.3 deposition and emphasize the role of histone chaperones in adjusting genome expression.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Histonas/metabolismo , Hidrolases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , DNA Ribossômico/metabolismo , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Histonas/genética , Hidrolases/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Filogenia , Plantas Geneticamente Modificadas , Proteína Nuclear Ligada ao X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...