Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 934: 173131, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734094

RESUMO

Pesticides are a major source of pollution for ecosystems. In agricultural catchments, ponds serve as buffer areas for pesticide transfers and biogeochemical hotspots for pesticide dissipation. Some studies have highlighted the specific impact of ponds on the dynamics of pesticides, but knowledge of their cumulative effect at the watershed scale is scarce. Hence, using a modelling approach, we assessed the cumulative role of ponds in pesticide transfer in an agricultural basin (Southwest of France, 1110 km2). The Soil and Water Assessment Tool (SWAT) model was used to model the Save basin, including 197 ponds selected with a Multi-Criteria Decision Aiding Model based on their pesticide interception capacities. The daily discharge, the suspended sediment loads and two herbicide loads (i.e. S-metolachlor and aclonifen) in dissolved and particulate phases were accurately simulated from January 2002 to July 2014 at a daily time step. The presence of ponds resulted in a yearly mean reduction at the watershed outlet of respectively 61 % and 42 % of aclonifen and S-metolachlor fluxes compared to the simulations in the absence of ponds. Sediment-related processes were the most efficient for pesticide dissipation, leading to a mean dissipation efficiency by ponds of 51.0 % for aclonifen and 34.4 % for S-metolachlor. This study provides a first quantification of the cumulative role of ponds in pesticide transfer at the catchment scale in an intensive agricultural catchment.

2.
J Environ Manage ; 320: 115911, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961144

RESUMO

In agricultural headwater catchments, wetlands such as ponds are numerous and well known to partly dissipate contamination. Most of the pesticides are transferred from soils to the aquatic environment during flood events. This study reports the annual/seasonal behaviour of 6 pesticides (metolachlor, boscalid, epoxiconazole, tebuconazole, aclonifen and pendimethalin) in such an environment. Because it is rarely considered, the study focussed on the high frequency of the distribution of pesticides between dissolved and particulate phases, as well as the main controlling factors of their upstream-downstream transfer. The pond removal rate was calculated to evaluate the wetland efficiency in pesticide mitigation. We conducted a one-year high frequency hydrochemical survey, with particular emphasis on flood events, in the upper Auradé catchment (SW-France), an area of long-term conventional agriculture on highly erosive carbonated soils. The inlet and outlet of the pond were instrumented for water level measurements and water sampling. The highest concentrations were observed for tebuconazole and, in general, the presence of the molecules during the year depended on the season. The pond showed satisfactory efficiency in pesticide attenuation for the six molecules considered, although the removal rate depended on the molecule and the bearing phase (from 28.4% for boscalid to 89.4% for aclonifen in the dissolved phase and from 22.1% for pendimethalin to 96.8% for metolachlor in the particulate fraction). Interestingly, the more hydrophilic the molecule (low LogKOW), the more efficient the pesticide removal rate was for its particulate fraction, and the opposite for hydrophobic molecules (high LogKOW). Flood events carried a large amount of Total Suspended Solid (TSS) bearing hydrophobic molecules from a major legacy of upper catchment soils, although 52% of the pesticides were transported by the dissolved fraction. Significant resuspension of TSS from the pond was evidenced by the annual mass balance with four tons of TSS released, while the positive rate of pesticide removal involved other effective mechanisms such as exchange and complexation. Although these constructed wetlands may be beneficial for pesticide mitigation, the results highlighted the need for improved land management in the upstream catchment during the different seasons to avoid bare soils that pose a risk of high surface water contamination, especially due to the presence of hydrophobic molecules in combination with a high erosive context.


Assuntos
Praguicidas , Poluentes Químicos da Água , Agricultura , Monitoramento Ambiental , Praguicidas/química , Lagoas , Solo/química , Água , Poluentes Químicos da Água/química
3.
Sci Total Environ ; 842: 156735, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35738369

RESUMO

Pesticides lead to surface water pollution and ecotoxicological effects on aquatic biota. Novel strategies are required to evaluate the contribution of degradation to the overall pesticide dissipation in surface waters. Here, we combined polar organic chemical integrative samplers (POCIS) with compound-specific isotope analysis (CSIA) to trace in situ pesticide degradation in artificial ponds and agricultural streams. The application of pesticide CSIA to surface waters is currently restricted due to environmental concentrations in the low µg.L-1 range, requiring processing of large water volumes. A series of laboratory experiments showed that POCIS enables preconcentration and accurate recording of the carbon isotope signatures (δ13C) of common pesticides under simulated surface water conditions and for various scenarios. Commercial and in-house POCIS did not significantly (Δδ13C < 1 %) change the δ13C of pesticides during uptake, extraction, and δ13C measurements of pesticides, independently of the pesticide concentrations (1-10 µg.L-1) or the flow speeds (6 or 14 cm.s-1). However, simulated rainfall events of pesticide runoff affected the δ13C of pesticides in POCIS. In-house POCIS coupled with CSIA of pesticides were also tested under different field conditions, including three flow-through and off-stream ponds and one stream receiving pesticides from agricultural catchments. The POCIS-CSIA method enabled to determine whether degradation of S-metolachlor and dimethomorph mainly occurred in agricultural soil or surface waters. Comparison of δ13C of S-metolachlor in POCIS deployed in a stream with δ13C of S-metolachlor in commercial formulations suggested runoff of fresh S-metolachlor in the midstream sampling site, which was not recorded in grab samples. Altogether, our study highlights that the POCIS-CSIA approach represents a unique opportunity to evaluate the contribution of degradation to the overall dissipation of pesticides in surface waters.


Assuntos
Praguicidas , Poluentes Químicos da Água , Isótopos de Carbono/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos/análise , Praguicidas/análise , Água/análise , Poluentes Químicos da Água/análise
4.
Sci Rep ; 11(1): 23588, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880304

RESUMO

This study simulates carbon dioxide (CO2) sequestration in 300 major world river basins (about 70% of global surface area) through carbonates dissolution and silicate hydrolysis. For each river basin, the daily timescale impacts under the RCP 2.6 and RCP 8.5 climate scenarios were assessed relative to a historical baseline (1969-1999) using a cascade of models accounting for the hydrological evolution under climate change scenarios. Here we show that the global temporal evolution of the CO2 uptake presents a general increase in the annual amount of CO2 consumed from 0.247 ± 0.045 Pg C year-1 to 0.261 and 0.273 ± 0.054 Pg C year-1, respectively for RCP 2.6 and RCP 8.5. Despite showing a general increase in the global daily carbon sequestration, both climate scenarios show a decrease between June and August. Such projected changes have been mapped and evaluated against changes in hydrology, identifying hot spots and moments for the annual and seasonal periods.

5.
Sci Total Environ ; 727: 138644, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32498214

RESUMO

The assessment of dissolved loadings and the sources of these elements in urban catchments' rivers is usually measured by punctual sampling or through high frequency sensors. Nevertheless, the combination of both methodologies has been less common even though the information they give is complementary. Major ion (Ca2+, Mg2+, Na+, K+, Cl-, SO42-, and alkalinity), organic matter (expressed as Dissolved Organic Carbon, DOC), and nutrients (NO3-, and PO43-) are punctually measured in the Deba river urban catchment (538 km2), in the northern part of the Iberian Peninsula (draining to the Bay of Biscay). Discharge, precipitation, and Electrical Conductivity (EC) are registered with a high frequency (10 min) in three gauging stations. The combination of both methodologies has allowed the assessment of major geochemical processes and the extent of impact of anthropogenic input on major composition of riverine water, as well as its spatial and temporal evolution. Three methodologies for loading estimation have been assessed and the error committed in the temporal aggregation is quantified. Results have shown that, even though carbonates dominate the draining area, the water major ion chemistry is governed by an evaporitic spring in the upper part of the catchment, while anthropogenic input is specially noted downstream of three wastewater treatment plants, in all nutrients and organic matter. The results of the present work illustrate how the combination of two monitoring methodologies allows for a better assessment of the spatial and temporal evolution on the major water quality in an urban catchment.

6.
Chemosphere ; 99: 134-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24275149

RESUMO

Pesticides applied on crops are leached with rainfall to groundwater and surface water. They threat the aquatic environment and may render water unfit for human consumption. Pesticide partitioning is one of the pesticide fate processes in the environment that should be properly formalised in pesticide fate models. Based on the analysis of 7 pesticide molecules (alachlor, atrazine, atrazine's transformation product deethylatrazine or DEA, isoproturon, tebuconazole and trifluralin) sampled from July 2009 to October 2010 at the outlet of the river Save (south-western France), the objectives of this study were (1) to check which of the environmental factors (discharge, pH, concentrations of total suspended matter (TSM), dissolved organic carbon (DOC) and particulate organic carbon (POC) could control the pesticide sorption dynamic, and (2) to establish a relationship between environmental factors, the partition coefficient Kd and the octanol/water distribution coefficient Kow. The comparison of physico-chemical parameters values during low flow and high flow shows that discharge, TSM and POC are the factors most likely controlling the pesticide sorption processes in the Save river network, especially for lower values of TSM (below 13mgL(-1)). We therefore express Kd depending on the widely literature-related variable Kow and on the commonly simulated variable TSM concentration. The equation can be implemented in any model describing the fluvial transport and fate of pesticides in both dissolved and sorbed phases, thus, Kd becomes a variable in time and space. The Kd calculation method can be applied to a wide range of catchments and organic contaminants.


Assuntos
Agricultura , Modelos Químicos , Praguicidas/química , Movimentos da Água , Poluentes Químicos da Água/química , Monitoramento Ambiental , França , Humanos , Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise
7.
J Hazard Mater ; 196: 210-9, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21945686

RESUMO

Rising pesticide levels in streams draining intensively managed agricultural land have a detrimental effect on aquatic ecosystems and render water unfit for human consumption. The Soil and Water Assessment Tool (SWAT) was applied to simulate daily pesticide transfer at the outlet from an agriculturally intensive catchment of 1110 km(2) (Save river, south-western France). SWAT reliably simulated both dissolved and sorbed metolachlor and trifluralin loads and concentrations at the catchment outlet from 1998 to 2009. On average, 17 kg of metolachlor and 1 kg of trifluralin were exported at outlet each year, with annual rainfall variations considered. Surface runoff was identified as the preferred pathway for pesticide transfer, related to the good correlation between suspended sediment exportation and pesticide, in both soluble and sorbed phases. Pesticide exportation rates at catchment outlet were less than 0.1% of the applied amount. At outlet, SWAT hindcasted that (i) 61% of metolachlor and 52% of trifluralin were exported during high flows and (ii) metolachlor and trifluralin concentrations exceeded European drinking water standards of 0.1 µg L(-1) for individual pesticides during 149 (3.6%) and 17 (0.4%) days of the 1998-2009 period respectively. SWAT was shown to be a promising tool for assessing large catchment river network pesticide contamination in the event of floods but further useful developments of pesticide transfers and partition coefficient processes would need to be investigated.


Assuntos
Acetamidas/análise , Inundações , Rios/química , Trifluralina/análise , Poluentes Químicos da Água/análise , Agricultura , Área Programática de Saúde , Monitoramento Ambiental , França , Modelos Teóricos , Estações do Ano , Qualidade da Água
8.
Rapid Commun Mass Spectrom ; 23(16): 2543-50, 2009 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-19603458

RESUMO

The Garonne is the largest river in the south-west of France, and its drainage basin stretches between the Pyrénées and the Massif Central mountains. Until now, no water stable isotope study has been performed on the whole Garonne river basin which is composed of different geological substrata, and where the water resources are limited during the dry summer period. This study focuses on the Garonne river and its tributaries from the Pyrénées foothill upstream to its confluence with the Lot River downstream. The aim of the study is to determine the origins of the surface waters using their chemical and stable isotopic compositions ((18)O, D and (13)C), to better understand their circulation within the drainage basin and to assess the anthropogenic influences. The Garonne displays a specific (18)O seasonal effect, and keeps its Pyrénean characteristics until its confluence with the Tarn River. The difference in the dissolved inorganic carbon (DIC) comes mainly from the change in lithology between the Pyrénées and the Massif Central mountains. Agriculture activity is only detected in the small tributaries.

9.
Sci Total Environ ; 405(1-3): 338-44, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18620735

RESUMO

Trace metal atmospheric contamination was assessed in one of the oldest European industrial sites of steel production situated in the southern part of the Grand-Duchy of Luxembourg. Using elemental ratios as well as Pb, Sr, and Nd isotopic compositions as tracers, we found preliminary results concerning the trace metal enrichment and the chemical/isotopic signatures of the most important emission sources using the lichen Xanthoria parietina sampled at 15 sites along a SW-NE transect. The concentrations of these elements decreased with increasing distance from the historical and actual steel-work areas. The combination of the different tracers (major elements, Rare Earth Element ratios, Pb, Sr and Nd isotopes) enabled us to distinguish between three principal sources: the historical steel production (old tailings corresponding to blast-furnace residues), the present steel production (industrial sites with arc electric furnace units) and the regional background (baseline) components. Other anthropogenic sources including a waste incinerator and major roads had only weak impacts on lichen chemistry and isotopic ratios. The correlation between the Sr and Nd isotope ratios indicated that the Sr-Nd isotope systems represented useful tools to trace atmospheric emissions of factories using scrap metal for steel production.


Assuntos
Atmosfera/química , Monitoramento Ambiental/métodos , Poluição Ambiental/análise , Líquens/química , Metalurgia , Aço , Isótopos , Chumbo/análise , Chumbo/química , Luxemburgo , Neodímio/análise , Neodímio/química , Estrôncio/análise , Estrôncio/química
10.
J Environ Monit ; 9(9): 1009-17, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17726563

RESUMO

Contamination of man and ecosystems by pesticides has become a major environmental concern. Whereas many studies exist on contamination from agriculture, the effects of urban sources are usually omitted. Fluvial sediment is a complex matrix of pollutants but little is known of its recent herbicide content. This study proposes a method for a fast and reliable analysis of herbicides by employing the accelerated solvent extractor (ASE). The aim of the study is to show the impact of a major town (Toulouse) on the herbicide content in the river. In this study, three herbicide families (i.e.s-triazine, substituted ureas and anilides) were analysed in fluvial sediment fractions at 11 sampling sites along the mid-Garonne River and its tributaries. River water contamination by herbicides is minor, except for at three sites located in urban areas. Among the herbicidal families studied, urban and suburban areas are distinguished from rural areas and were found to be the most contaminated sites during the study period, a winter low-water event. The herbicide content of the coarse sediment fractions is about one third of that found in the fine fractions and usually ignored. The distribution of pesticide concentrations across the whole range of particle sizes was investigated to clarify the role of plant remains on the significant accumulation in the coarse fractions.


Assuntos
Sedimentos Geológicos/química , Herbicidas/análise , Resíduos de Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , França , Herbicidas/química , Tamanho da Partícula , Resíduos de Praguicidas/química , Poluentes Químicos da Água/química
11.
Sci Total Environ ; 361(1-3): 163-78, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16168464

RESUMO

Total atmospheric Hg contamination in a French mountainous catchment upstream from a chlor-alkali industrial site was assessed using Hg concentrations in the deepest soil horizon, in the stream bottom sediments, in river waters and in bryophytes. The natural background level of Hg content deriving from rock weathering was estimated to 32 ng g(-1) in the deepest soil layers. The soils appear to be Hg contaminated in two stages: atmospheric deposition and leaching through the soil profiles of Hg-organic matter complexes. The Hg enrichment factor (EF(Hg)(Sc)) which could be calculated by normalization to a conservative element like Sc, allows to estimate the major contribution (63% to 95%) of the atmospheric inputs, even in the upper part of the basin. This contribution may be attributed to diffuse regional atmospheric deposition of Hg and is mainly due to the geographic location of the chlor-alkali plant. This study shows for the first time that the mercury enrichment is proportional to the carbon content indicating that most of the atmospheric mercury deposition is trapped by the organic matter contained in the soils and in the stream sediments. The Hg stock in the soils of the upper catchment and the soil erosion contribution to the riverine Hg fluxes are estimated for the first time and allow to assess the Hg residence time. It indicates that Hg is trapped in the soils of such a polluted catchment for probably several thousand years.


Assuntos
Poluentes Atmosféricos/análise , Resíduos Industriais , Mercúrio/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Altitude , Briófitas/química , Carbono/análise , Indústria Química , Monitoramento Ambiental , França , Sedimentos Geológicos/análise , Rios , Abastecimento de Água , Vento
12.
Environ Int ; 31(6): 891-5, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16023207

RESUMO

Complex toxic effects of Cd2+, Zn2+, and acid rain on growth of kidney bean (Phaseolus vulgaris L) were studied in a pot experiment by measurement of fresh weights of the plants, determination of surperoxide dismutase (SOD), peroxidase (POD), and lipid peroxidation (MDA) in the plant organs, and observation of injury symptoms. The experimental results demonstrated that all treatments of Cd2+, Zn2+, and/or acid rain significantly decreased fresh weights of kidney bean and caused toxic effects on growth of the plants, especially higher amounts of Cd2+ and Zn2+ and higher acidity of acid rain. Combination of these three pollutant factors resulted in more serious toxic effects than any single pollutant and than combinations of any two pollutants. SOD, POD, and MDA in the plant organs changed with different pollution levels, but MDA content in the leaves showed the best relationship between the pollution levels and toxic effects.


Assuntos
Chuva Ácida/toxicidade , Cádmio/toxicidade , Phaseolus/efeitos dos fármacos , Zinco/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Peroxidase/metabolismo , Phaseolus/enzimologia , Phaseolus/crescimento & desenvolvimento , Folhas de Planta/enzimologia , Raízes de Plantas/enzimologia , Caules de Planta/enzimologia , Superóxido Dismutase/metabolismo
13.
Environ Pollut ; 138(1): 167-77, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15935535

RESUMO

This paper presents an attempt to reach natural background levels of heavy metals in surficial sediments of the Gulf of Lions (NW Mediterranean). To correct for the grain-size effect, normalization procedures based on a clay mineral indicator element are commonly used, after a first grain size separation by sieving. In our study, we tested the applicability of this method with respect to commonly used normalizer elements, and found that stable Cs shows the best ability to reflect the fine sediment fraction. Background levels were successfully reached for Co, Cr, Cu, Ni and Pb, compared to various literature references. Nevertheless, in the case of lead, the normalized data depicted a general enrichment in all samples, and the natural levels could only be reached when concentrations were corrected for the atmospheric contribution by analysing lead isotope ratios. Also for Zn, a general enrichment was found in our samples, although less important.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Poluentes do Solo/análise , Césio/análise , França , Isótopos/análise , Chumbo/análise , Mar Mediterrâneo , Tamanho da Partícula , Poluentes Radioativos do Solo/análise
14.
Sci Total Environ ; 312(1-3): 195-219, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12873411

RESUMO

This study is one of very few dealing with the distribution and the origin of heavy metals in French soils from a priori non-polluted forest areas. The abundance of heavy metals measured in these soils decreases as follows: Cr>Zn>Pb>Ni>Cu>Co>>Cd. Total concentrations of Pb, Cr and Ni in some soils exceed the European thresholds for non-polluted soils and even the French association of normalization critical values for sludge spreading. The lowest heavy metal contents are observed in acid soils while the highest concentrations are in the calcaric cambisol and in the mollic andosol, which is rather scarce as compared with the other French forest soils. With the exception of the podzol, Cr and Ni concentrations increase with depth in all soil profiles. The distribution pattern of Co, Cu, Zn depends on the soil characteristics. In some acid soils, however, Cu and Zn decrease with depth. Pb and Cd are accumulated in the upper soil horizons. Heavy metals accumulate in deep soil horizons in relation to important clay content in the dystric planosol and stagnic luvisol. The concentration of each heavy metal is always controlled by different parameters (soil pH, iron and aluminum oxide content, clay content, organic matter and cation exchange capacity), which are heavy metal specific. This study highlights the metal-trapping character of andosol and calcaric soil, the weak heavy metal retention in acid soils, the leaching and trapping character in leached clayed soils, and the migration of heavy metals in the podzol. Pb and Cr concentrations indicate a significant enrichment in surface horizons from various soils in areas which receive significant acid atmospheric pollution. Particularly, the highest Pb content is observed in a soil located in the N-NE part of France. Lead isotope ratios measured in the cambic podzol and the calcaric cambisol, exhibit the importance of the anthropogenic sources and particularly the influence of global atmospheric inputs from leaded gasoline compared to regional and local industrial emissions. The anthropogenic Pb contribution is estimated to 83, 30 and 11%, respectively, for surface, intermediate and deep horizons of the cambic podzol located in the northern part of France, and to 68% in surface horizon of the calcaric cambisol located in the Alps.


Assuntos
Poluentes Atmosféricos/análise , Metais Pesados/análise , Poluentes do Solo/análise , Árvores , Monitoramento Ambiental , França , Indústrias , Emissões de Veículos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...