Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 35(17): 2260-2264, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28364940

RESUMO

Gavi, the Vaccine Alliance, supports immunisation programmes in eligible countries to reach children with lifesaving vaccines. Dramatic improvement in the scale and performance of current cold chain systems is required to extend the reach of immunisation services - especially for children living in remote locations - to advance progress towards full vaccine coverage. Achieving these improvements will require a healthier market for cold chain equipment where the products meet user needs, are sustainably priced, and are available in sufficient quantities to meet demand. Yet evidence suggests that the cold chain market has suffered from several failures including limited demand visibility, fragmented procurement, and insufficient information exchange between manufacturers and buyers on needs and equipment performance. One of Gavi's strategic goals is to shape markets for vaccines and other immunisation products, including cold chain equipment and in 2015, Gavi created a new mechanism - the Cold Chain Equipment (CCE) Optimisation Platform - to strengthen country cold chain systems by offering financial support and incentives for higher performing CCE. The main objective of the CCE Platform is to get more equipment that is efficient, sustainable, and better performing deployed to every health facility where it is required at an affordable price. To achieve these objectives, Gavi is putting in place tested market shaping approaches and tools adapted for the CCE market: the development of market strategies or 'roadmaps'; improvement of product performance through the development of target product profiles (TPPs); strategic engagement with CCE manufacturers and countries to enhance information sharing; and tailoring procurement tactics to the CCE market. These approaches and tools will allow for increased demand and supply of higher-performing, cost-effective and quality products. By strengthening immunisation systems with improved cold chain equipment, Gavi countries can begin to address the underlying problems limiting vaccine availability and improve the coverage and equity of vaccines.


Assuntos
Armazenamento de Medicamentos , Equipamentos e Provisões , Setor de Assistência à Saúde , Programas de Imunização , Refrigeração/instrumentação , Vacinas/provisão & distribuição , Humanos
2.
Front Plant Sci ; 5: 151, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24795738

RESUMO

Tolerance of plants to abiotic stressors such as drought and salinity is triggered by complex multicomponent signaling pathways to restore cellular homeostasis and promote survival. Major plant transcription factor families such as bZIP, NAC, AP2/ERF, and MYB orchestrate regulatory networks underlying abiotic stress tolerance. Sucrose non-fermenting 1-related protein kinase 2 and mitogen-activated protein kinase pathways contribute to initiation of stress adaptive downstream responses and promote plant growth and development. As a convergent point of multiple abiotic cues, cellular effects of environmental stresses are not only imbalances of ionic and osmotic homeostasis but also impaired photosynthesis, cellular energy depletion, and redox imbalances. Recent evidence of regulatory systems that link sensing and signaling of environmental conditions and the intracellular redox status have shed light on interfaces of stress and energy signaling. ROS (reactive oxygen species) cause severe cellular damage by peroxidation and de-esterification of membrane-lipids, however, current models also define a pivotal signaling function of ROS in triggering tolerance against stress. Recent research advances suggest and support a regulatory role of ROS in the cross talks of stress triggered hormonal signaling such as the abscisic acid pathway and endogenously induced redox and metabolite signals. Here, we discuss and review the versatile molecular convergence in the abiotic stress responsive signaling networks in the context of ROS and lipid-derived signals and the specific role of stomatal signaling.

3.
Plant Cell Rep ; 32(7): 1007-16, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23525744

RESUMO

Plants adapt to adverse environments by integrating growth and development to environmentally activated cues. Within the adaptive signaling networks, plant hormones tightly control convergent developmental and stress adaptive processes and coordinate cellular responses to external and internal conditions. Recent studies have uncovered novel antagonizing roles of the plant hormones gibberellin (GA) and abscisic acid (ABA) in integrating growth and development in plants with environmental signaling. According to current concepts, GRAS transcription factors of the DELLA and SCARECROW-LIKE (SCL) types have a key role as major growth regulators and have pivotal functions in modulating GA signaling. Significantly, current models emphasize a function of DELLA proteins as central regulators in GA homeostasis. DELLA proteins interact with the cellular GA receptor GID1 (GA-INSENSITIVE DWARF1) and degradation of DELLAs activates the function of GA. Supplementary to the prevailing view of a pivotal role of GRAS family transcriptional factors in plant growth regulation, recent work has suggested that the DELLA and SCL proteins integrate generic GA responses into ABA-controlled abiotic stress tolerance. Here, we review and discuss how GRAS type proteins influence plant development and versatile adaptation as hubs in GA and ABA triggered signaling pathways.


Assuntos
Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
4.
Int J Mol Sci ; 13(5): 5933-5951, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22754341

RESUMO

Transcription factors of the APETALA 2/Ethylene Response Factor (AP2/ERF)- family have been implicated in diverse processes during development, stress acclimation and retrograde signaling. Fifty-three leaf-expressed AP2/ERFs were screened for their transcriptional response to abscisic acid (ABA), 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), methylviologen (MV), sucrose and high or low light, respectively, and revealed high reactivity to these effectors. Six of them (AP2-2, ARF14, CEJ1, ERF8, ERF11, RAP2.5) were selected for combinatorial response analysis to ABA, DCMU and high light. Additive, synergistic and antagonistic effects demonstrated that these transcription factors are components of multiple signaling pathways. AP2-2 (At1g79700) was subjected to an in depth study. AP2-2 transcripts were high under conditions linked to limited carbohydrate availability and stress and down-regulated in extended light phase, high light or in the presence of sugar. ap2-2 knock out plants had unchanged metabolite profiles and transcript levels of co-expressed genes in extended darkness. However, ap2-2 revealed more efficient germination and faster early growth under high sugar, osmotic or salinity stress, but the difference was abolished in the absence of sugar or during subsequent growth. It is suggested that AP2-2 is involved in mediating starvation-related and hormonal signals.


Assuntos
Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Herbicidas/farmacologia , Proteínas de Homeodomínio/genética , Proteínas Nucleares/genética , Sacarose/farmacologia , Fatores de Transcrição/genética , Arabidopsis/genética , Cloreto de Cálcio , Diurona/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Inativação de Genes , Luz/efeitos adversos , Paraquat/farmacologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...