Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cells ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607083

RESUMO

The neuro-immune axis has a crucial function both during physiological and pathological conditions. Among the immune cells, myeloid-derived suppressor cells (MDSCs) exert a pivotal role in regulating the immune response in many pathological conditions, influencing neuroinflammation and neurodegenerative disease progression. In chronic neuroinflammation, MDSCs could lead to exacerbation of the inflammatory state and eventually participate in the impairment of cognitive functions. To have a complete overview of the role of MDSCs in neurodegenerative diseases, research on PubMed for articles using a combination of terms made with Boolean operators was performed. According to the search strategy, 80 papers were retrieved. Among these, 44 papers met the eligibility criteria. The two subtypes of MDSCs, monocytic and polymorphonuclear MDSCs, behave differently in these diseases. The initial MDSC proliferation is fundamental for attenuating inflammation in Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), but not in amyotrophic lateral sclerosis (ALS), where MDSC expansion leads to exacerbation of the disease. Moreover, the accumulation of MDSC subtypes in distinct organs changes during the disease. The proliferation of MDSC subtypes occurs at different disease stages and can influence the progression of each neurodegenerative disorder differently.


Assuntos
Células Supressoras Mieloides , Doenças Neurodegenerativas , Humanos , Células Supressoras Mieloides/patologia , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/patologia , Inflamação/patologia , Proliferação de Células
2.
Geroscience ; 46(2): 2531-2544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38008859

RESUMO

MultiMorbidity (MM), defined as the co-occurrence of two or more chronic conditions, is associated with poorer health outcomes, such as recurrent hospital readmission and mortality. As a group of conditions, cardiovascular disease (CVD) exemplifies several challenges of MM, and the identification of prognostic minimally invasive biomarkers to stratify mortality risk in patients affected by cardiovascular MM is a huge challenge. Circulating miRNAs associated to inflammaging and endothelial dysfunction, such as miR-17, miR-21-5p, and miR-126-3p, are expected to have prognostic relevance. We analyzed a composite profile of circulating biomarkers, including miR-17, miR-21-5p, and miR-126-3p, and routine laboratory biomarkers in a sample of 246 hospitalized geriatric patients selected for cardiovascular MM from the Report-AGE INRCA database and BioGER INRCA biobank, to evaluate the association with all-cause mortality during 31 days and 12 and 24 months follow-up. Circulating levels of miR-17, miR-126-3p, and some blood parameters, including neutrophil to lymphocyte ratio (NLR) and eGFR, were significantly associated with mortality in these patients. Overall, our results suggest that in a cohort of geriatric hospitalized patients affected by cardiovascular MM, lower circulating miR-17 and miR-126-3p levels could contribute to identify patients at higher risk of short- and medium-term mortality.


Assuntos
Sistema Cardiovascular , MicroRNA Circulante , MicroRNAs , Humanos , Idoso , Multimorbidade , Biomarcadores
3.
Crit Rev Oncol Hematol ; 194: 104246, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135018

RESUMO

Non-Small Cell Lung Cancer (NSCLC) represents ∼85% of all lung cancers and ∼15-20% of them are characterized by mutations affecting the Epidermal Growth Factor Receptor (EGFR). For several years now, a class of tyrosine kinase inhibitors was developed, targeting sensitive mutations affecting the EGFR (EGFR-TKIs). To date, the main burden of the TKIs employment is due to the onset of resistance mutations. This scoping review aims to resume the current situation about the cell line models employed for the in vitro evaluation of resistance mechanisms induced by EGFR-TKIs in oncogene-addicted NSCLC. Adenocarcinoma results the most studied NSCLC histotype with the H1650, H1975, HCC827 and PC9 mutated cell lines, while Gefitinib and Osimertinib the most investigated inhibitors. Overall, data collected frame the current advancement of this topic, showing a plethora of approaches pursued to overcome the TKIs resistance, from RNA-mediated strategies to the innovative combination therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB , Linhagem Celular Tumoral , Mutação
4.
Mech Ageing Dev ; 216: 111876, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802485

RESUMO

Elevation of cardiac damage biomarkers is associated with adverse clinical outcomes and increased mortality in COVID-19 patients. This study assessed the association of admission serum levels of sST2 and H-FABP with in-hospital mortality in 191 geriatric patients (median age 86 yrs., IQR 82-91 yrs.) with COVID-19 and available measures of hs-cTnT and NT-proBNP at admission. Cox proportional hazards models were utilized to predict in-hospital mortality, considering clinical/biochemical confounders as covariates. A composite cardiac score was calculated to improve predictive accuracy. Patients deceased during their hospital stay (26%) exhibited higher levels of all biomarkers, which demonstrated good discrimination for in-hospital mortality. Addition of sST2 and H-FABP significantly improved the discriminatory power of hs-cTnT and NT-proBNP. The composite cardiac score (AUC=0.866) further enhanced the predictive accuracy. Crude and adjusted Cox regressions models revealed that both sST2 and H-FABP were independently associated with in-hospital mortality (HR for sST2 ≥129 ng/mL, 4.32 [1.48-12.59]; HR for H-FABP ≥18 ng/mL, 7.70 [2.12-28.01]). The composite cardiac score also independently correlated with in-hospital mortality (HR for 1-unit increase, 1.47 [1.14-1.90]). In older patients with COVID-19, sST2 and H-FABP demonstrated prognostic value, improving the predictive accuracy of the routinely assessed biomarkers hs-cTnT and NT-proBNP.


Assuntos
COVID-19 , Idoso , Idoso de 80 Anos ou mais , Humanos , Biomarcadores , Proteína 3 Ligante de Ácido Graxo , Mortalidade Hospitalar , Fragmentos de Peptídeos , Prognóstico
5.
Antioxidants (Basel) ; 12(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37627504

RESUMO

Olive tree by-products have been deeply studied as an invaluable source of bioactive compounds. Several in vitro and in vivo studies showed that olive leaf extract (OLE) has anti-inflammatory and antioxidant properties. Here, we wanted to assess the valuable benefits of two less-studied OLE components-3,4-DHPEA-EDA (Oleacin, OC) and 3,4-DHPEA-EA (Oleuropein-Aglycone, OA)-directly purified from OLE using a cost-effective and environmentally sustainable method, in line with the principles of circular economy. OLE, OC and OA were then tested in human cellular models involved in acute and chronic inflammation and in the pathogenesis of viral infections, i.e., lipopolysaccharide (LPS)-treated monocyte/macrophages (THP-1) and endothelial cells (HUVECs), senescent HUVECs and Poly(I:C)-treated small airway epithelial cells (hSAECs). Results showed that OC and OA are efficient in ameliorating almost all of the pro-inflammatory readouts (IL-1ß, TNF-α, IL-8, ICAM, VCAM) and reducing the release of IL-6 in all the cellular models. In hSAECs, they also modulate the expression of SOD2, NF-kB and also ACE2 and TMPRSS2, whose expression is required for SARS-CoV-2 virus entry. Overall, these data suggest the usefulness of OLE, OC and OA in controlling or preventing inflammatory responses, in particular those associated with viral respiratory infections and aging.

6.
Heliyon ; 9(5): e15640, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37251897

RESUMO

Trained dogs can recognize the volatile organic compounds contained in biological samples of patients with COVID-19 infection. We assessed the sensitivity and specificity of in vivo SARS-CoV-2 screening by trained dogs. We recruited five dog-handler dyads. In the operant conditioning phase, the dogs were taught to distinguish between positive and negative sweat samples collected from volunteers' underarms in polymeric tubes. The conditioning was validated by tests involving 16 positive and 48 negative samples held or worn in such a way that the samples were invisible to the dog and handler. In the screening phase the dogs were led by their handlers to a drive-through facility for in vivo screening of volunteers who had just received a nasopharyngeal swab from nursing staff. Each volunteer who had already swabbed was subsequently tested by two dogs, whose responses were recorded as positive, negative, or inconclusive. The dogs' behavior was constantly monitored for attentiveness and wellbeing. All the dogs passed the conditioning phase, their responses showing a sensitivity of 83-100% and a specificity of 94-100%. The in vivo screening phase involved 1251 subjects, of whom 205 had a COVID-19 positive swab and two dogs per each subject to be screened. Screening sensitivity and specificity were respectively 91.6-97.6% and 96.3-100% when only one dog was involved, whereas combined screening by two dogs provided a higher sensitivity. Dog wellbeing was also analyzed: monitoring of stress and fatigue suggested that the screening activity did not adversely impact the dogs' wellbeing. This work, by screening a large number of subjects, strengthen recent findings that trained dogs can discriminate between COVID-19 infected and healthy human subjects and introduce two novel research aspects: i) assessement of signs of fatigue and stress in dogs during training and testing, and ii) combining screening by two dogs to improve detection sensitivity and specificity. Using some precautions to reduce the risk of infection and spillover, in vivo COVID-19 screening by a dog-handler dyad can be suitable to quickly screen large numbers of people: it is rapid, non-invasive and economical, since it does not involve actual sampling, lab resources or waste management, and is suitable to screen large numbers of people.

7.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982191

RESUMO

The nuclear factor NF-kB is the master transcription factor in the inflammatory process by modulating the expression of pro-inflammatory genes. However, an additional level of complexity is the ability to promote the transcriptional activation of post-transcriptional modulators of gene expression as non-coding RNA (i.e., miRNAs). While NF-kB's role in inflammation-associated gene expression has been extensively investigated, the interplay between NF-kB and genes coding for miRNAs still deserves investigation. To identify miRNAs with potential NF-kB binding sites in their transcription start site, we predicted miRNA promoters by an in silico analysis using the PROmiRNA software, which allowed us to score the genomic region's propensity to be miRNA cis-regulatory elements. A list of 722 human miRNAs was generated, of which 399 were expressed in at least one tissue involved in the inflammatory processes. The selection of "high-confidence" hairpins in miRbase identified 68 mature miRNAs, most of them previously identified as inflammamiRs. The identification of targeted pathways/diseases highlighted their involvement in the most common age-related diseases. Overall, our results reinforce the hypothesis that persistent activation of NF-kB could unbalance the transcription of specific inflammamiRNAs. The identification of such miRNAs could be of diagnostic/prognostic/therapeutic relevance for the most common inflammatory-related and age-related diseases.


Assuntos
MicroRNAs , NF-kappa B , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Mineração de Dados , Envelhecimento/genética
8.
Cell Mol Life Sci ; 80(3): 75, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847916

RESUMO

Methyl-CpG binding protein 2 (MeCP2) is a ubiquitous transcriptional regulator. The study of this protein has been mainly focused on the central nervous system because alterations of its expression are associated with neurological disorders such as Rett syndrome. However, young patients with Rett syndrome also suffer from osteoporosis, suggesting a role of MeCP2 in the differentiation of human bone marrow mesenchymal stromal cells (hBMSCs), the precursors of osteoblasts and adipocytes. Here, we report an in vitro downregulation of MeCP2 in hBMSCs undergoing adipogenic differentiation (AD) and in adipocytes of human and rat bone marrow tissue samples. This modulation does not depend on MeCP2 DNA methylation nor on mRNA levels but on differentially expressed miRNAs during AD. MiRNA profiling revealed that miR-422a and miR-483-5p are upregulated in hBMSC-derived adipocytes compared to their precursors. MiR-483-5p, but not miR-422a, is also up-regulated in hBMSC-derived osteoblasts, suggesting a specific role of the latter in the adipogenic process. Experimental modulation of intracellular levels of miR-422a and miR-483-5p affected MeCP2 expression through direct interaction with its 3' UTR elements, and the adipogenic process. Accordingly, the knockdown of MeCP2 in hBMSCs through MeCP2-targeting shRNA lentiviral vectors increased the levels of adipogenesis-related genes. Finally, since adipocytes released a higher amount of miR-422a in culture medium compared to hBMSCs we analyzed the levels of circulating miR-422a in patients with osteoporosis-a condition characterized by increased marrow adiposity-demonstrating that its levels are negatively correlated with T- and Z-scores. Overall, our findings suggest that miR-422a has a role in hBMSC adipogenesis by downregulating MeCP2 and its circulating levels are associated with bone mass loss in primary osteoporosis.


Assuntos
Doenças Ósseas Metabólicas , Células-Tronco Mesenquimais , Proteína 2 de Ligação a Metil-CpG , MicroRNAs , Síndrome de Rett , Animais , Humanos , Ratos , Regiões 3' não Traduzidas , Adipogenia/genética , Regulação para Baixo/genética , Proteína 2 de Ligação a Metil-CpG/genética , MicroRNAs/genética
9.
Cells ; 12(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672222

RESUMO

Bone marrow mesenchymal stromal cells (BMSCs) are multipotent cells able to self-renew and differentiate, depending on the microenvironment, into adipocytes and osteoblasts. These cells have a limited number of replications and enter replicative senescence during in vitro expansion. The role of DNA methylation (DNAm) assumes importance in cell function and commitment; however, its exact contribution to BMSC differentiation and replicative senescence is still unclear. We performed a genome-wide DNAm analysis on BMSCs cultured in vitro at early passages and induced to differentiate into adipocytes and osteoblasts, and on replicative senescent BMSCs and HUVECs, to identify DNAm patterns of senescence and differentiation. We also compared BMSCs and HUVECs in replicative senescence and found that, in both cellular systems, genome-wide hypomethylation was accompanied by a higher-than-expected overlap of differentially methylated positions (DMPs) and concordance in terms of direction of the change. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on lineage-independent senescence-associated DMPs revealed 16 common pathways, including Insulin resistance, Molecule adhesion, and Wnt/ß-catenin signaling. In both adipogenesis and osteogenesis, we observed a general demethylation of CpG sites compared with undifferentiated BMSCs with a higher number of DMPs in osteogenesis. KEGG analysis resulted in 30 pathways enriched in osteoblasts and only 2 in adipocytes when compared to undifferentiated cells. When comparing differentiated BMSCs with senescent ones, osteogenesis exhibited a greater overlap with senescence in terms of number of DMPs and direction of methylation change compared to adipogenesis. In conclusion, this study may be useful for future research on general mechanisms that occur in replicative senescence and furthermore to identify trajectories of BMSC differentiation and common aspects of differentiated and senescent cells.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Metilação de DNA/genética , Senescência Celular/genética
10.
Prostate Cancer Prostatic Dis ; 26(1): 41-46, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36411316

RESUMO

BACKGROUND: Immunotherapy has not achieved improvement of survival in prostate cancer patients. Myeloid-derived suppressor cells (MDSCs) in tumor microenvironment can hamper its efficacy. Some preclinical studies explored the role of MDSCs in prostate cancer development. We aimed to verify the availability of studies exploring the prognostic effect of circulating MDSCs in prostate cancer patients. METHODS: We systematically selected studies for a meta-analysis, which compares survival between prostate cancer patients with high vs low circulating MDSC levels. We extracted or calculated hazard ratios (HRs) and relative 95% confidence intervals (CIs) in terms of overall survival (OS) from selected studies. We calculated the pooled HR and relative 95% CIs and estimated publication bias. RESULTS: Among 133 studies retrieved from search on Pubmed, 5 eligible studies (236 prostate cancer patients) met inclusion criteria. High circulating MDSC levels are associated with a worse OS (HR = 2.19; 95%CI = 1.51-3.17). Heterogeneity was not significant (I2 = 0%; p = 0.64). Publication bias was also not significant (Egger's test, p = 0.09). CONCLUSIONS: High levels of circulating MDSCs induce a worse OS in prostate cancer patients than in those with low levels. This finding supports the importance of MDSC detection and targeting also in prostate cancer patients.


Assuntos
Células Supressoras Mieloides , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Células Supressoras Mieloides/patologia , Prognóstico , Imunoterapia , Microambiente Tumoral
11.
Thromb Res ; 221: 149-156, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396517

RESUMO

INTRODUCTION: Direct oral anticoagulants (DOACs) are widely employed for antithrombotic prophylaxis in patients with atrial fibrillation (AF). However, there is still uncertainty about their risk-benefit profile in older patients. Here, we evaluated the efficacy, safety, and dose appropriateness of DOACs in a real-world population of outpatients with non-valvular AF, with a specific focus on subjects aged over 80 years and/or with reduced renal function. MATERIALS AND METHODS: Single-center retrospective study including patients who had been prescribed a DOAC between May 2014 and May 2021 for long-term anticoagulation in non-valvular AF. Patients anticoagulated for <4 weeks were excluded. The primary efficacy outcome was a composite of cardiovascular (CV) death, stroke, or systemic embolism. The primary safety outcome was major bleeding. RESULTS: A total of 1154 patients (median age 84 yrs., range 57-100 yrs.), among which 862 were 80 years and older, were included. In the subgroup of subjects ≥80 yrs., a subtherapeutic dose of DOAC was associated with an increased incidence of CV mortality, stroke, or systemic embolism (multivariable Cox regression, HR = 2.09, 95 % CI: 1.09-4.02), with no benefit in terms of prevalence of bleeding events (21.5 % vs. 18.6 %, p = 0.428), and the incidence of adverse safety and efficacy outcomes was not increased in patients with a reduced renal function (eGFR ≤30 mL/min). Plasma concentration of DOACs, assessed in a subset of 367 patients, did not increase with advanced age (≥ 80 yrs., two-way ANOVA, p = 0.656) nor with declining eGFR (≤30 mL/min, two-way ANOVA, p = 0.643) and was not associated with adverse safety and efficacy outcomes. CONCLUSIONS: Data from our study support the use of DOACs in populations of older adults and remark on the risks associated with inappropriate prescriptions in terms of CV mortality and adverse events.


Assuntos
Fibrilação Atrial , Embolia , Acidente Vascular Cerebral , Humanos , Idoso , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Fibrilação Atrial/complicações , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/epidemiologia , Anticoagulantes/efeitos adversos , Estudos Retrospectivos , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/prevenção & controle , Acidente Vascular Cerebral/tratamento farmacológico , Hemorragia/tratamento farmacológico , Embolia/etiologia , Embolia/prevenção & controle , Administração Oral
12.
Clin Exp Med ; 23(5): 1551-1561, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36401744

RESUMO

Immunotherapy is the main standard treatment for non-small cell lung cancer (NSCLC) patients. Immune suppressive cells in tumor microenvironment can counteract its efficacy. Myeloid-derived suppressor cells (MDSCs) include two major subsets: polymorphonuclear (PMN-MDSCs) and monocytic (M-MDSCs). Many studies explored the prognostic impact of these cell populations in NSCLC patients. The aim of this systematic review is to select studies for a meta-analysis, which compares prognosis between patients with high vs low circulating MDSC levels. We collected hazard ratios (HRs) and relative 95% confidence intervals (CIs) in terms of progression-free survival (PFS) or recurrence-free survival (RFS), and overall survival (OS). Among 139 studies retrieved from literature search, 14 eligible studies (905 NSCLC patients) met inclusion criteria. Low circulating MDSC levels favor a better PFS/RFS (HR = 1.84; 95% CI = 1.28-2.65) and OS (HR = 1.78; 95% CI = 1.29-2.46). The subgroup analysis based on MDSC subtypes (total-, PMN-, and M-MDSCs) obtained a statistical significance only for M-MDSCs, both in terms of PFS/RFS (HR = 2.67; 95% CI = 2.04-3.50) and OS (HR = 2.10; 95% CI = 1.61-2.75). NSCLC patients bearing high M-MDSC levels in peripheral blood experience a worse prognosis than those with low levels, both in terms of PFS/RFS and OS. This finding suggests that detecting and targeting this MDSC subset could help to improve NSCLC treatment efficacy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Supressoras Mieloides , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Células Supressoras Mieloides/patologia , Prognóstico , Neoplasias Pulmonares/patologia , Modelos de Riscos Proporcionais , Microambiente Tumoral
14.
Cardiovasc Diabetol ; 21(1): 180, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-36088327

RESUMO

BACKGROUND: Patients with type 2 diabetes (T2DM) present an increased risk of cardiovascular (CV) disease and excess CV-related mortality. Beyond the established role of brain natriuretic peptide (BNP) and cardiac troponins (cTn), other non-cardiac-specific biomarkers are emerging as predictors of CV outcomes in T2DM. METHODS: Serum levels of soluble suppression of tumorigenesis 2 (sST2), high-sensitivity (hs)-cTnI, and N-terminal (NT)-proBNP were assessed in 568 patients with T2DM and 115 healthy controls (CTR). Their association with all-cause mortality and the development of diabetic complications was tested in T2DM patients over a median follow-up of 16.8 years using Cox models and logistic regressions. RESULTS: sST2 followed an increasing trend from CTR to uncomplicated T2DM patients (T2DM-NC) to patients with at least one complication (T2DM-C), while hs-cTnI was significantly higher in T2DM-C compared to CTR but not to T2DM-NC. A graded association was found between sST2 (HR 2.76 [95% CI 1.20-6.33] for ≥ 32.0 ng/mL and 2.00 [1.02-3.94] for 16.5-32.0 ng/mL compared to < 16.5 ng/mL, C-statistic = 0.729), NT-proBNP (HR 2.04 [1.90-4.55] for ≥ 337 ng/L and 1.48 [1.05-2.10] for 89-337 ng/L compared to < 89 ng/L, C-statistic = 0.741), and 15-year mortality in T2DM, whereas increased mortality was observed in patients with hs-cTnI ≥ 7.8 ng/L (HR 1.63 [1.01-2.62]). A 'cardiac score' based on the combination of sST2, hs-cTnI, and NT-proBNP was significantly associated with all-cause mortality (HR 1.35 [1.19-1.53], C-statistic = 0.739) and development of CV events. CONCLUSIONS: sST2, hs-cTnI, and NT-proBNP are associated with 15-year mortality and onset of CV events in T2DM. The long-term prognostic value of sST2 and its ability to track variables related to insulin resistance and associated metabolic disorders support its implementation into routine clinical practice.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Prognóstico , Estudos Retrospectivos , Troponina I , Troponina T
15.
Crit Rev Oncol Hematol ; 174: 103698, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35525390

RESUMO

The high mortality rate of malignant pleural mesothelioma led to study the mechanisms for chemoresistance. The cancer stem cell (CSC) model has been proposed to explain chemoresistance. CSCs are characterized by self-renewal capacity, that is detected through tumor-initiating cell assays. As in other malignancies, many studies sought to identify surface markers to isolate CSCs from malignant mesothelioma. Other studies characterized malignant mesothelioma CSCs for the expression of specific genes involved in stemness and the expression of proteins involved in chemoresistance. However, the main methods to characterize isolated CSCs include sphere formation, invasiveness, tumor-initiating capacity and expression of specific surface markers. The better knowledge of malignant mesothelioma CSCs allowed exploring new potential targets to develop specific treatments.


Assuntos
Mesotelioma Maligno , Mesotelioma , Linhagem Celular Tumoral , Humanos , Mesotelioma/genética , Células-Tronco Neoplásicas/patologia
16.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408963

RESUMO

This study evaluates the effects of five different peptides, the Epitalon® tetrapeptide, the Vilon® dipeptide, the Thymogen® dipeptide, the Thymalin® peptide complex, and the Chonluten® tripeptide, as regulators of inflammatory and proliferative processes in the human monocytic THP-1, which is a human leukemia monocytic cell line capable of differentiating into macrophages by PMA in vitro. These peptides (Khavinson Peptides®), characterized by Prof. Khavinson from 1973 onwards, were initially isolated from animal tissues and found to be organ specific. We tested the capacity of the five peptides to influence cell cultures in vitro by incubating THP-1 cells with peptides at certain concentrations known for being effective on recipient cells in culture. We found that all five peptides can modulate key proliferative patterns, increasing tyrosine phosphorylation of mitogen-activated cytoplasmic kinases. In addition, the Chonluten tripeptide, derived from bronchial epithelial cells, inhibited in vitro tumor necrosis factor (TNF) production of monocytes exposed to pro-inflammatory bacterial lipopolysaccharide (LPS). The low TNF release by monocytes is linked to a documented mechanism of TNF tolerance, promoting attenuation of inflammatory action. Therefore, all peptides inhibited the expression of TNF and pro-inflammatory IL-6 cytokine stimulated by LPS on terminally differentiated THP-1 cells. Lastly, by incubating the THP1 cells, treated with the peptides, on a layer of activated endothelial cells (HUVECs activated by LPS), we observed a reduction in cell adhesion, a typical pro-inflammatory mechanism. Overall, the results suggest that the Khavinson Peptides® cooperate as natural inducers of TNF tolerance in monocyte, and act on macrophages as anti-inflammatory molecules during inflammatory and microbial-mediated activity.


Assuntos
Lipopolissacarídeos , Monócitos , Citocinas/metabolismo , Dipeptídeos/farmacologia , Células Endoteliais/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Monócitos/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
17.
Mech Ageing Dev ; 204: 111674, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35421418

RESUMO

To reduce the mortality of COVID-19 older patients, clear criteria to predict in-hospital mortality are urgently needed. Here, we aimed to evaluate the performance of selected routine laboratory biomarkers in improving the prediction of in-hospital mortality in 641 consecutive COVID-19 geriatric patients (mean age 86.6 ± 6.8) who were hospitalized at the INRCA hospital (Ancona, Italy). Thirty-four percent of the enrolled patients were deceased during the in-hospital stay. The percentage of severely frail patients, assessed with the Clinical Frailty Scale, was significantly increased in deceased patients compared to the survived ones. The age-adjusted Charlson comorbidity index (CCI) score was not significantly associated with an increased risk of death. Among the routine parameters, neutrophilia, eosinopenia, lymphopenia, neutrophil-to-lymphocyte ratio (NLR), C-reactive protein, procalcitonin, IL-6, and NT-proBNP showed the highest predictive values. The fully adjusted Cox regressions models confirmed that high neutrophil %, NLR, derived NLR (dNLR), platelet-to-lymphocyte ratio (PLR), and low lymphocyte count, eosinophil %, and lymphocyte-to-monocyte ratio (LMR) were the best predictors of in-hospital mortality, independently from age, gender, and other potential confounders. Overall, our results strongly support the use of routine parameters, including complete blood count, in geriatric patients to predict COVID-19 in-hospital mortality, independent from baseline comorbidities and frailty.


Assuntos
COVID-19 , Fragilidade , Idoso , Idoso de 80 Anos ou mais , Contagem de Células Sanguíneas , COVID-19/diagnóstico , Mortalidade Hospitalar , Humanos , Prognóstico , Estudos Retrospectivos
18.
Mech Ageing Dev ; 204: 111667, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35341896

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 infection has been of unprecedented clinical and socio-economic worldwide relevance. The case fatality rate for COVID-19 grows exponentially with age and the presence of comorbidities. In the older patients, COVID-19 manifests predominantly as a systemic disease associated with immunological, inflammatory, and procoagulant responses. Timely diagnosis and risk stratification are crucial steps to define appropriate therapies and reduce mortality, especially in the older patients. Chronically and systemically activated innate immune responses and impaired antiviral responses have been recognized as the results of a progressive remodeling of the immune system during aging, which can be described by the words 'immunosenescence' and 'inflammaging'. These age-related features of the immune system were highlighted in patients affected by COVID-19 with the poorest clinical outcomes, suggesting that the mechanisms underpinning immunosenescence and inflammaging could be relevant for COVID-19 pathogenesis and progression. Increasing evidence suggests that senescent myeloid and endothelial cells are characterized by the acquisition of a senescence-associated pro-inflammatory phenotype (SASP), which is considered as the main culprit of both immunosenescence and inflammaging. Here, we reviewed this evidence and highlighted several circulating biomarkers of inflammaging that could provide additional prognostic information to stratify COVID-19 patients based on the risk of severe outcomes.


Assuntos
COVID-19 , Envelhecimento , Biomarcadores , COVID-19/diagnóstico , Células Endoteliais , Humanos , Inflamação , Pandemias , SARS-CoV-2
19.
Mech Ageing Dev ; 202: 111636, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122770

RESUMO

The stratification of mortality risk in COVID-19 patients remains extremely challenging for physicians, especially in older patients. Innovative minimally invasive molecular biomarkers are needed to improve the prediction of mortality risk and better customize patient management. In this study, aimed at identifying circulating miRNAs associated with the risk of COVID-19 in-hospital mortality, we analyzed serum samples of 12 COVID-19 patients by small RNA-seq and validated the findings in an independent cohort of 116 COVID-19 patients by qRT-PCR. Thirty-four significantly deregulated miRNAs, 25 downregulated and 9 upregulated in deceased COVID-19 patients compared to survivors, were identified in the discovery cohort. Based on the highest fold-changes and on the highest expression levels, 5 of these 34 miRNAs were selected for the analysis in the validation cohort. MiR-320b and miR-483-5p were confirmed to be significantly hyper-expressed in deceased patients compared to survived ones. Kaplan-Meier and Cox regression models, adjusted for relevant confounders, confirmed that patients with the 20% highest miR-320b and miR-483-5p serum levels had three-fold increased risk to die during in-hospital stay for COVID-19. In conclusion, high levels of circulating miR-320b and miR-483-5p can be useful as minimally invasive biomarkers to stratify older COVID-19 patients with an increased risk of in-hospital mortality.


Assuntos
COVID-19/sangue , COVID-19/mortalidade , MicroRNA Circulante/sangue , Mortalidade Hospitalar , Hospitalização , MicroRNAs/sangue , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/diagnóstico , COVID-19/genética , MicroRNA Circulante/genética , Feminino , Humanos , Masculino , MicroRNAs/genética , Valor Preditivo dos Testes , Prognóstico , RNA-Seq , Medição de Risco , Fatores de Risco , Fatores de Tempo , Regulação para Cima
20.
Mult Scler Relat Disord ; 54: 103126, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34243103

RESUMO

BACKGROUND: Inflamma-miRs are a group of microRNAs involved in the regulation of innate and adaptive immune responses. Increasing evidence support the contribution of dysregulated inflamma-miRs in the pathogenesis of multiple sclerosis. The aim of this study was to evaluate the expression of selected inflamma-miRs, i.e., miR-34a-5p, -125a-5p, -146a-5p, and -155, in relapsing-remitting multiple sclerosis (RRMS) and their modulation after treatment with dimethyl fumarate (DMF). METHODS: Circulating levels of microRNAs involved in inflammatory response (inflamma-miRs) were compared between healthy controls (CTRs, n=21) and patients with RRMS (n=24) who started treatment with DMF. RESULTS: Plasma levels of miR-34a (p<0.001) and miR-125a-5p (p=0.034) were higher, whereas miR-146a-5p levels were lower (p=0.041) in RRMS patients compared to CTRs. Circulating miR-125a-5p (p=0.001), miR-146a-5p (p<0.001), and miR-155 (p=0.013) were reduced after 4-month treatment with DMF. Among these, baseline and 4-month follow up miR-125a-5p (p=0.028) and miR-146a-5p (p=0.042) levels were related to disability progression. CONCLUSION: Circulating inflamma-miRs could represent candidate tools to predict MS clinical course and evaluate the effectiveness of disease-modifying treatments in RRMS.


Assuntos
MicroRNAs , Esclerose Múltipla Recidivante-Remitente , Fumarato de Dimetilo/uso terapêutico , Humanos , MicroRNAs/sangue , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/genética , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...