Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Solid Earth ; 119(11): 8107-8131, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26167425

RESUMO

To investigate differences in the frictional behavior between initially bare rock surfaces of serpentinite and powdered serpentinite ("gouge") at subseismic to seismic slip rates, we conducted single-velocity step and multiple-velocity step friction experiments on an antigorite-rich and lizardite-rich serpentinite at slip rates (V) from 0.003 m/s to 6.5 m/s, sliding displacements up to 1.6 m, and normal stresses (σn ) up to 22 MPa for gouge and 97 MPa for bare surfaces. Nominal steady state friction values (µnss) in gouge at V = 1 m/s are larger than in bare surfaces for all σn tested and demonstrate a strong σn dependence; µnss decreased from 0.51 at 4.0 MPa to 0.39 at 22.4 MPa. Conversely, µnss values for bare surfaces remained ∼0.1 with increasing σn and V. Additionally, the velocity at the onset of frictional weakening and the amount of slip prior to weakening were orders of magnitude larger in gouge than in bare surfaces. Extrapolation of the normal stress dependence for µnss suggests that the behavior of antigorite gouge approaches that of bare surfaces at σn ≥ 60 MPa. X-ray diffraction revealed dehydration reaction products in samples that frictionally weakened. Microstructural analysis revealed highly localized slip zones with melt-like textures in some cases gouge experiments and in all bare surfaces experiments for V ≥ 1 m/s. One-dimensional thermal modeling indicates that flash heating causes frictional weakening in both bare surfaces and gouge. Friction values for gouge decrease at higher velocities and after longer displacements than bare surfaces because strain is more distributed. KEY POINTS: Gouge friction approaches that of bare surfaces at high normal stressDehydration reactions and bulk melting in serpentinite in < 1 m of slipFlash heating causes dynamic frictional weakening in gouge and bare surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...