Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 8(1): 305, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37591843

RESUMO

Although VEGF-B was discovered as a VEGF-A homolog a long time ago, the angiogenic effect of VEGF-B remains poorly understood with limited and diverse findings from different groups. Notwithstanding, drugs that inhibit VEGF-B together with other VEGF family members are being used to treat patients with various neovascular diseases. It is therefore critical to have a better understanding of the angiogenic effect of VEGF-B and the underlying mechanisms. Using comprehensive in vitro and in vivo methods and models, we reveal here for the first time an unexpected and surprising function of VEGF-B as an endogenous inhibitor of angiogenesis by inhibiting the FGF2/FGFR1 pathway when the latter is abundantly expressed. Mechanistically, we unveil that VEGF-B binds to FGFR1, induces FGFR1/VEGFR1 complex formation, and suppresses FGF2-induced Erk activation, and inhibits FGF2-driven angiogenesis and tumor growth. Our work uncovers a previously unrecognized novel function of VEGF-B in tethering the FGF2/FGFR1 pathway. Given the anti-angiogenic nature of VEGF-B under conditions of high FGF2/FGFR1 levels, caution is warranted when modulating VEGF-B activity to treat neovascular diseases.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Fator B de Crescimento do Endotélio Vascular , Humanos , Fator 2 de Crescimento de Fibroblastos/genética , Imunoterapia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
2.
Front Immunol ; 13: 836837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359946

RESUMO

Post-traumatic knee osteoarthritis is characterized by cartilage degeneration, subchondral bone remodeling, osteophyte formation, and synovial changes. Therapeutic targeting of inflammatory activity in the knee immediately post injury may alter the course of osteoarthritis development. This study aimed to determine whether CD200R1 agonists, namely the protein therapeutic CD200Fc or the synthetic DNA aptamer CCS13, both known to act as anti-inflammatory agents, are able to delay the pathogenesis of injury-associated knee osteoarthritis in a murine model. Ten week old male C57BL/6 mice were randomized and surgical destabilization of the medial meniscus (DMM) to induce knee arthritis or sham surgery as a control were performed. CCS13 was evaluated as a therapeutic treatment along with CD200Fc and a phosphate-buffered saline vehicle control. Oligonucleotides were injected intra-articularly beginning one week after surgery, with a total of six injections administered prior to sacrifice at 12 weeks post-surgery. Histopathological assessment was used as the primary outcome measure to assess cartilage and synovial changes, while µCT imaging was used to compare the changes to the subchondral bone between untreated and treated arthritic groups. We did not find any attenuation of cartilage degeneration or synovitis in DMM mice with CD200Fc or CCS13 at 12 weeks post-surgery, nor stereological differences in the properties of subchondral bone. The use of CD200R1 agonists to blunt the inflammatory response in the knee are insufficient to prevent disease progression in the mouse DMM model of OA without anatomical restoration of the normal joint biomechanics.


Assuntos
Osteoartrite do Joelho , Sinovite , Animais , Modelos Animais de Doenças , Articulação do Joelho/patologia , Masculino , Meniscos Tibiais/patologia , Meniscos Tibiais/cirurgia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Orexina , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/etiologia , Sinovite/patologia
3.
Sci Transl Med ; 14(631): eabg8027, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35138911

RESUMO

T cell receptor (TCR)-based therapy has the potential to induce durable clinical responses in patients with cancer by targeting intracellular tumor antigens with high sensitivity and by promoting T cell survival. However, the need for TCRs specific for shared oncogenic antigens and the need for manufacturing protocols able to redirect T cell specificity while preserving T cell fitness remain limiting factors. By longitudinal monitoring of T cell functionality and dynamics in 15 healthy donors, we isolated 19 TCRs specific for Wilms' tumor antigen 1 (WT1), which is overexpressed by several tumor types. TCRs recognized several peptides restricted by common human leukocyte antigen (HLA) alleles and displayed a wide range of functional avidities. We selected five high-avidity HLA-A*02:01-restricted TCRs, three that were specific to the less explored immunodominant WT137-45 and two that were specific to the noncanonical WT1-78-64 epitopes, both naturally processed by primary acute myeloid leukemia (AML) blasts. With CRISPR-Cas9 genome editing tools, we combined TCR-targeted integration into the TCR α constant (TRAC) locus with TCR ß constant (TRBC) knockout, thus avoiding TCRαß mispairing and maximizing TCR expression and function. The engineered lymphocytes were enriched in memory stem T cells. A unique WT137-45-specific TCR showed antigen-specific responses and efficiently killed AML blasts, acute lymphoblastic leukemia blasts, and glioblastoma cells in vitro and in vivo in the absence of off-tumor toxicity. T cells engineered to express this receptor are being advanced into clinical development for AML immunotherapy and represent a candidate therapy for other WT1-expressing tumors.


Assuntos
Leucemia Mieloide Aguda , Proteínas WT1 , Antígenos de Neoplasias , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Linfócitos T , Proteínas WT1/genética , Proteínas WT1/metabolismo
4.
Cancer Immunol Immunother ; 69(1): 103-114, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31811336

RESUMO

We previously reported that CD200 overexpression in the host decreases progression and metastasis of the highly aggressive metastatic 4THM breast carcinoma. We have explored a possible synergistic interaction between the CD200 mimetic PEG-M49 and pegylated liposomal doxorubicin (Peg-Dox) in wild-type CD200 knockout (CD200-/-) and CD200 Receptor 1 knockout (CD200R1-/-) mice for the first time. A 4THM breast carcinoma model and three groups of BALB/c mice (wild type, CD200-/- and CD200R1-/-) were used. Five days after injection of tumor cells, mice were injected with Peg-Dox (ip, once a week) and PEG-M49 or a control aptamer (iv, every 3 days). Necropsies were performed either 12 (mid-point) or 24 (endpoint) days after injection and the extent of tumor growth, visceral metastasis and changes in the tumor-directed immune response were evaluated. PEG-M49 and Peg-Dox co-treatment induced complete tumor regression and loss of macroscopic lung metastasis in four out of seven WT mice. This synergistic anti-tumoral effect is thought to be due to Peg-M49-induced inhibition of Gr1 + CD11b + cells and Peg-Dox-induced increases in tumor-infiltrating CD8 + and CD8CD4 double-positive cells. Similar changes were observed in CD200R1-/- mice indicating that the primary effects of Peg-M49 are mediated by non-CD200R1 receptors. We also demonstrated for the first time that tumor growth, metastasis, and tumor infiltrating GR1 + CD11b + cells were markedly increased in CD200R1-/- mice, indicating an anti-inflammatory and protective role of CD200. CD200 mimetics might be a safe and effective immunomodulatory treatment in conjunction with classical chemotherapeutics for therapy of aggressive metastatic breast carcinoma.


Assuntos
Antígenos CD/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/análogos & derivados , Animais , Antígenos CD/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Aptâmeros de Nucleotídeos/uso terapêutico , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de Orexina/genética , Receptores de Orexina/imunologia , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico
5.
Ultrasound Med Biol ; 45(2): 500-512, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30447880

RESUMO

Checkpoint inhibitor (CI) immunotherapy is playing an increasingly prominent role in the treatment of cancer but is effective and durable in only a subset of patients. There are concerted efforts to improve CI therapy through the use of multiple CIs or use of CIs in combination with other anti-cancer agents. Here we investigate the use of "anti-vascular" ultrasound-stimulated microbubble (USMB) treatments in combination with anti-PD-1 CI therapy. The colorectal cancer cell line CT26 was used to conduct longitudinal growth studies along with acute experiments to assess ultrasound-induced anti-tumor immune responses using flow cytometry and enzyme-linked immunospot (ELISPOT) analysis. Longitudinal experiments indicated that USMB + anti-PD-1 treatments significantly enhanced tumor growth inhibition and animal survival relative to monotherapies. Flow cytometry and ELISPOT data did not clearly support a T cell-dependent mechanism for the enhancement. Therefore, the results indicate the ability of anti-vascular USMBs to increase the anti-tumor effects of CI therapy; the specific mechanisms of enhancement remain to be established.


Assuntos
Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Imunoterapia/métodos , Microbolhas , Ultrassom/métodos , Animais , Linhagem Celular Tumoral , Terapia Combinada/métodos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos BALB C
6.
Mol Ther Nucleic Acids ; 12: 350-358, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30195773

RESUMO

Functional aptamers displaying agonistic or antagonistic properties are showing great promise as modulators of immune responses. Here, we report the development of a polyethylene glycol-modified (PEGylated) DNA aptamer as a cross-species (murine and human) CD200R1 agonist that modulates inflammatory responses in vivo. Specifically, DNA aptamers were discovered by performing independent SELEX searches on recombinant murine and human CD200R1. Aptamer motifs identified by next generation sequencing (NGS) were subsequently compared, leading to the discovery of motifs common to both targets. The CD200R1 DNA aptamer CCS13 displayed the highest agonistic activity toward CD200R1 in terms of suppressing the induction of cytotoxic T-lymphocytes (CTLs) in both human and murine allogeneic-mixed lymphocyte cultures (allo-MLCs). A 20-kDa polyethylene glycol (PEG) chain was covalently attached to the 5' end of this aptamer, and the resulting conjugate was shown to block inflammatory responses in murine models of skin graft rejection and house-dust-mite-induced allergic airway inflammation. Importantly, this agonistic aptamer does not suppress CTL induction in 5-day allo-MLCs with responder cells derived from CD200R1-/- mice, indicating that its mode of action is directly linked to CD200R1 activation. This study suggests that one can derive agonistic DNA aptamers that can be verified as immuno-modulators in murine models with outcomes potentially translatable to the treatment of human conditions.

7.
JCI Insight ; 3(15)2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30089713

RESUMO

BACKGROUND: There is currently no clinical distinction between different TP53 mutations, despite increasing evidence that not all mutations have equally deleterious effects on the activity of the encoded tumor suppressor protein p53. The objective of this study was to determine whether these biological differences have clinical significance. METHODS: This retrospective cohort analysis included 2,074 patients with sporadic TP53 mutations (403 unique mutations) and 1,049 germline TP53 mutation carriers (188 unique mutations). Survival was projected by stratifying patients according to their p53 mutant-specific residual transcriptional activity scores. RESULTS: Pan-cancer survival analyses revealed a strong association between increased mutant p53 residual activity and improved survival in males with glioma and gastric adenocarcinoma (P = 0.002 and P = 0.02) that was not present in the female cohorts (P = 0.16 and P = 0.50). Male glioma and gastric cancer patients with TP53 mutations resulting in >5% transcriptional activity had 3.1-fold (95% CI, 2.4-3.8; P = 0.002; multivariate analysis hazard ratio [HR]) and 4.6-fold (95% CI, 3.7-5.6; P = 0.001; multivariate analysis HR) lower risk of death as compared with patients harboring inactive (0% activity) p53 mutants. The correlation between mutant p53 residual activity with survival was recapitulated in the dataset of germline TP53 mutation carriers (HR = 3.0, 95% CI, 2.7-3.4, P < 0.001 [females]; HR = 2.2, 95% CI, 1.8-2.6, P < 0.001 [males]), where brain and gastric tumors were more common among males (P < 0.001 and P = 0.001, respectively). CONCLUSION: The retention of mutant p53 transcriptional activity prognosticates superior survival for men with glioma and gastric adenocarcinoma harboring sporadic TP53 mutations. Among germline TP53 mutation carriers, increased residual transcriptional activity is correlated with prolonged lifetime cancer survival and delayed tumor onset, and males are more prone to develop brain and gastric tumors. FUNDING: Canadian Institutes of Health Research (no. 148556).


Assuntos
Adenocarcinoma/mortalidade , Neoplasias Encefálicas/mortalidade , Glioma/mortalidade , Neoplasias Gástricas/mortalidade , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma/genética , Adulto , Idoso , Neoplasias Encefálicas/genética , Canadá/epidemiologia , Conjuntos de Dados como Assunto , Feminino , Regulação Neoplásica da Expressão Gênica , Mutação em Linhagem Germinativa , Glioma/genética , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores Sexuais , Neoplasias Gástricas/genética , Análise de Sobrevida , Transcrição Gênica , Proteína Supressora de Tumor p53/genética
8.
J Natl Cancer Inst ; 110(12): 1418-1421, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29955864

RESUMO

Li-Fraumeni syndrome (LFS) is a rare hereditary cancer disorder with highly variable clinical outcomes that results from germline mutations in the TP53 gene. Here we report that the quaternary structure of p53 is an important factor affecting cellular functions and the clinical outcomes of LFS patients (n = 87). Specifically, carriers of monomeric p53 mutants (n = 56) exhibited complete penetrance, with a 2.11-fold greater risk of cancer-related death (95% confidence interval [CI] = 1.07 to 4.30) and a statistically significantly lower median survival age as compared with carriers of multimeric (dimeric or tetrameric, n = 31) p53 mutants (33 years, 95% CI = 30 to 50, vs 51 years, 95% CI = 40 to NA, respectively, two-sided P = .03), who presented incomplete penetrance. Cellular functional assays using p53-null H1299 cells expressing clinically relevant p53 mutants confirmed that the cellular effects observed upon loss of p53 oligomerization are associated with clinical outcomes of LFS patients. The association between p53 oligomeric state and clinical phenotype suggests that TP53 mutations are not all equivalent and supports the implementation of new genotype-adapted guidelines for the management of LFS patients with TP53 mutations in the oligomerization domain.


Assuntos
Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/mortalidade , Mutação , Multimerização Proteica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Modelos Moleculares , Prognóstico , Conformação Proteica , Relação Estrutura-Atividade , Análise de Sobrevida , Proteína Supressora de Tumor p53/metabolismo
9.
Int J Cancer ; 143(8): 1963-1977, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29756328

RESUMO

Elevated levels of the carcinoembryonic antigen (CEA; CEACAM5) in the serum of colorectal cancer (CRC) patients represent a clinical biomarker that correlates with disease recurrence. However, a mechanistic role for soluble CEA (sCEA) in tumor progression and metastasis remains to be established. In our study, we report that sCEA acts as a paracrine factor, activating human fibroblasts by signaling through both the STAT3 and AKT1-mTORC1 pathways, promoting their transition to a cancer-associated fibroblast (CaF) phenotype. sCEA-activated fibroblasts express and secrete higher levels of fibronectin, including cellular EDA+ -fibronectin (Fn-EDA) that selectively promote the implantation and adherence of CEA-expressing cancer cells. Immunohistochemical analyses of liver tissues derived from CRC patients with elevated levels of sCEA reveal that the expression of cellular Fn-EDA co-registers with CEA-expressing liver metastases. Taken together, these findings indicate a direct role for sCEA as a human fibroblast activation factor, in priming target tissues for the engraftment of CEA-expressing cancer cells, through the differentiation of tissue-resident fibroblasts, resulting in a local change in composition of the extracellular matrix.


Assuntos
Antígeno Carcinoembrionário/sangue , Antígeno Carcinoembrionário/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/patologia , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/sangue , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Matriz Extracelular/fisiologia , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Células HT29 , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia
10.
JCI Insight ; 2(18)2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28931757

RESUMO

V-domain immunoglobulin suppressor of T cell activation (VISTA) is a recently discovered immune checkpoint ligand that functions to suppress T cell activity. The therapeutic potential of activating this immune checkpoint pathway to reduce inflammatory responses remains untapped, largely due to the inability to derive agonists targeting its unknown receptor. A dimeric construct of the IgV domain of VISTA (VISTA-Fc) was shown to suppress the activation of T cells in vitro. However, this effect required its immobilization on a solid surface, suggesting that VISTA-Fc may display limited efficacy as a VISTA-receptor agonist in vivo. Herein, we have designed a stable pentameric VISTA construct (VISTA.COMP) by genetically fusing its IgV domain to the pentamerization domain from the cartilage oligomeric matrix protein (COMP). In contrast to VISTA-Fc, VISTA.COMP does not require immobilization to inhibit the proliferation of CD4+ T cells undergoing polyclonal activation. Furthermore, we show that VISTA.COMP, but not VISTA-Fc, functions as an immunosuppressive agonist in vivo capable of prolonging the survival of skin allografts in a mouse transplant model as well as rescuing mice from acute concanavalin-A-induced hepatitis. Collectively, we believe our data demonstrate that VISTA.COMP is a checkpoint receptor agonist and the first agent to our knowledge targeting the putative VISTA-receptor to suppress T cell-mediated immune responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteínas de Membrana/imunologia , Engenharia de Proteínas , Receptores de Superfície Celular/agonistas , Animais , Células Cultivadas , Ligantes , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia
11.
Biochemistry ; 56(9): 1337-1347, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28199087

RESUMO

Diacylglycerol kinase ε (DGKε) catalyzes the phosphorylation of diacylglycerol, producing phosphatidic acid. DGKε demonstrates exquisite specificity for the acyl chains of diacylglycerol. This contributes to the enrichment of particular acyl chains within the lipids of the phosphatidylinositol cycle. Phosphatidylinositol is highly enriched with 1-stearoyl-2-arachidonoyl, which is important for maintaining cellular health. Dysregulation of DGKε perturbs lipid signaling and biosynthesis, which has been linked to epilepsy, Huntington's disease, and heart disease. Recessive loss-of-function mutations in the DGKε gene cause atypical hemolytic uremic syndrome. Because DGKε has never been purified, little is known about its molecular properties. We expressed human DGKε and a truncated version lacking the first 40 residues (DGKεΔ40) and purified both proteins to near homogeneity using nickel affinity chromatography. Kinase activity measurements showed that both purified constructs retained their acyl chain specificity for diacylglycerol with an activity level comparable to that of N-terminally FLAG epitope-tagged forms of these proteins expressed in COS7 cells. Both constructs lost activity upon being stored, particularly upon freezing and thawing, which was minimized by the addition of glycerol. Circular dichroism revealed that DGKε and DGKεΔ40 both contain significant amounts of α-helical and ß structure and exhibit biphasic thermal denaturations. The loss of secondary structure upon heating was irreversible for both constructs, with relatively little effect of added dioleoylphosphatidylcholine. The addition of 50% glycerol stabilized both constructs and facilitated refolding of their secondary structures after heating. This is the first successful purification and characterization of DGKε's enzymatic and conformational properties. The purification of DGKε permits detailed analyses of this unique enzyme and will improve our understanding of DGKε-related diseases.


Assuntos
Diacilglicerol Quinase/genética , Diacilglicerol Quinase/isolamento & purificação , Animais , Diacilglicerol Quinase/química , Diacilglicerol Quinase/metabolismo , Estabilidade Enzimática , Expressão Gênica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Desnaturação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Células Sf9 , Spodoptera , Especificidade por Substrato , Temperatura
12.
Cell Cycle ; 15(23): 3210-3219, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27754743

RESUMO

Mutations in the oligomerization domain of p53 are genetically linked to cancer susceptibility in Li-Fraumeni Syndrome. These mutations typically alter the oligomeric state of p53 and impair its transcriptional activity. Activation of p53 through tetramerization is required for its tumor suppressive function by inducing transcriptional programs that lead to cell fate decisions such as cell cycle arrest or apoptosis. How p53 chooses between these cell fate outcomes remains unclear. Here, we use 5 oligomeric variants of p53, including 2 novel p53 constructs, that yield either monomeric, dimeric or tetrameric forms of p53 and demonstrate that they induce distinct cellular activities and gene expression profiles that lead to different cell fate outcomes. We report that dimeric p53 variants are cytostatic and can arrest cell growth, but lack the ability to trigger apoptosis in p53-null cells. In contrast, p53 tetramers induce rapid apoptosis and cell growth arrest, while a monomeric variant is functionally inactive, supporting cell growth. In particular, the expression of pro-arrest CDKN1A and pro-apoptotic P53AIP1 genes are important cell fate determinants that are differentially regulated by the oligomeric state of p53. This study suggests that the most abundant oligomeric species of p53 present in resting cells, namely p53 dimers, neither promote cell growth or cell death and that shifting the oligomeric state equilibrium of p53 in cells toward monomers or tetramers is a key parameter in p53-based cell fate decisions.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem da Célula , Multimerização Proteica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Proliferação de Células , Regulação da Expressão Gênica , Humanos , Transcrição Gênica
13.
Int J Cancer ; 139(4): 841-53, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27037842

RESUMO

The engraftment of circulating cancer cells at distal sites represents a key step in the metastatic cascade, yet remains an unexplored target for therapeutic intervention. In this study, we establish that a vaccination strategy yielding an antigen-specific TH 9 response induces long term host surveillance and prevents the engraftment of circulating cancer cells. Specifically, we show that vaccination with a recombinant CEA IgV-like N domain, formulated with the TLR3 ligand poly I:C, elicits a CEA-specific TH 9 response, wherein IL-9 secreting TH cells act in concert with CEA N domain-specific antibodies as well as activated mast cells in preventing tumor cell engraftment. The development of this immune response was dependent on TLR3, since interference with the TLR3-dsRNA complex formation led to a reduction in vaccine-imparted protection and a shift in the resulting immune response toward a TH 2 response. These findings point to the existence of an alternate tumor targeting immune mechanism that can be exploited for the purpose of developing vaccine therapies targeting tumor dissemination and engraftment.


Assuntos
Antígenos de Neoplasias/imunologia , Mastócitos/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antígenos de Neoplasias/genética , Vacinas Anticâncer/imunologia , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Xenoenxertos , Humanos , Interleucina-9/biossíntese , Mastócitos/metabolismo , Camundongos , Camundongos Transgênicos , Metástase Neoplásica , Neoplasias/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/metabolismo , Receptor 3 Toll-Like/metabolismo
14.
FASEB J ; 29(8): 3493-505, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25921830

RESUMO

VEGF-A (VEGF) drives angiogenesis through activation of downstream effectors to promote endothelial cell proliferation and migration. Although VEGF binds both VEGF receptor 1 (R1) and receptor 2 (R2), its proangiogenic effects are attributed to R2. Secreted protein, acidic, rich in cysteine (SPARC) is a matricellular glycoprotein thought to inhibit angiogenesis by preventing VEGF from activating R1, but not R2. Because R2 rather than R1 mediates proangiogenic activities of VEGF, the role of human SPARC in angiogenesis was reevaluated. We confirm that association of SPARC with VEGF inhibits VEGF-induced HUVEC adherence, motility, and proliferation in vitro and blocks VEGF-induced blood vessel formation ex vivo. SPARC decreases VEGF-induced phosphorylation of R2 and downstream effectors ERK, Akt, and p38 MAPK as shown by Western blot and/or phosphoflow analysis. Surface plasmon resonance indicates that SPARC binds slowly to VEGF (0.865 ± 0.02 × 10(4) M(-1) s(-1)) with a Kd of 150 nM, forming a stable complex that dissociates slowly (1.26 ± 0.003 × 10(-3) s(-1)). Only domain III of SPARC binds VEGF, exhibiting a 15-fold higher affinity than full-length SPARC. These findings support a model whereby SPARC regulates angiogenesis by sequestering VEGF, thus restricting the activation of R2 and the subsequent activation of downstream targets critical for endothelial cell functions.


Assuntos
Cisteína/metabolismo , Neovascularização Patológica/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Cinética , Sistema de Sinalização das MAP Quinases/fisiologia , Osteonectina/metabolismo , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Mol Ther Nucleic Acids ; 4: e237, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25919090

RESUMO

Blocking the immunoinhibitory PD-1:PD-L1 pathway using monoclonal antibodies has led to dramatic clinical responses by reversing tumor immune evasion and provoking robust and durable antitumor responses. Anti-PD-1 antibodies have now been approved for the treatment of melanoma, and are being clinically tested in a number of other tumor types as both a monotherapy and as part of combination regimens. Here, we report the development of DNA aptamers as synthetic, nonimmunogenic antibody mimics, which bind specifically to the murine extracellular domain of PD-1 and block the PD-1:PD-L1 interaction. One such aptamer, MP7, functionally inhibits the PD-L1-mediated suppression of IL-2 secretion in primary T-cells. A PEGylated form of MP7 retains the ability to block the PD-1:PD-L1 interaction, and significantly suppresses the growth of PD-L1+ colon carcinoma cells in vivo with a potency equivalent to an antagonistic anti-PD-1 antibody. Importantly, the anti-PD-1 DNA aptamer treatment was not associated with off-target TLR-9-related immune responses. Due to the inherent advantages of aptamers including their lack of immunogenicity, low cost, long shelf life, and ease of synthesis, PD-1 antagonistic aptamers may represent an attractive alternative over antibody-based anti PD-1 therapeutics.

16.
EMBO Mol Med ; 7(6): 770-87, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25851538

RESUMO

Angiopoietin-1 (Ang1) activation of Tie2 receptors on endothelial cells (ECs) reduces adhesion by tumor cells (TCs) and limits junctional permeability to TC diapedesis. We hypothesized that systemic therapy with Vasculotide (VT)-a purported Ang1 mimetic, Tie2 agonist-can reduce the extravasation of potentially metastatic circulating TCs by similarly stabilizing the host vasculature. In vitro, VT and Ang1 treatments impeded endothelial hypermeability and the transendothelial migration of MDA-MB-231∙LM2-4 (breast), HT29 (colon), or SN12 (renal) cancer cells to varying degrees. In mice, VT treatment inhibited the transit of TCs through the pulmonary endothelium, but not the hepatic or lymphatic endothelium. In the in vivo LM2-4 model, VT monotherapy had no effect on primary tumors, but significantly delayed distant metastatic dissemination to the lungs. In the post-surgical adjuvant treatment setting, VT therapeutically complemented sunitinib therapy, an anti-angiogenic tyrosine kinase inhibitor which limited the local growth of residual disease. Unexpectedly, detailed investigations into the putative mechanism of action of VT revealed no evidence of Tie2 agonism or Tie2 binding; alternative mechanisms have yet to be determined.


Assuntos
Angiopoietina-1/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/secundário , Células Endoteliais/efeitos dos fármacos , Metástase Neoplásica/prevenção & controle , Receptor TIE-2/agonistas , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Células Endoteliais/fisiologia , Camundongos , Permeabilidade/efeitos dos fármacos
17.
Mol Ther Nucleic Acids ; 3: e190, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25158092

RESUMO

CD200R1 expressed on the surface of myeloid and lymphoid cells delivers immune inhibitory signals to modulate inflammation when engaged with its ligand CD200. Signalling through CD200/CD200R1 has been implicated in a number of immune-related diseases including allergy, infection, cancer and transplantation, as well as several autoimmune disorders including arthritis, systemic lupus erythematosus, and multiple sclerosis. We report the development and characterization of DNA aptamers, which bind to murine CD200R1 and act as potent signalling molecules in the absence of exogenous CD200. These agonistic aptamers suppress cytotoxic T-lymphocyte induction in 5-day allogeneic mixed leukocyte culture and induce rapid phosphorylation of the CD200R1 cytoplasmic tail thereby initiating immune inhibitory signalling. PEGylated conjugates of these aptamers show significant in vivo immunosuppression and enhance survival of allogeneic skin grafts as effectively as soluble CD200Fc. As DNA aptamers exhibit inherent advantages over conventional protein-based therapeutics including low immunogenicity, ease of synthesis, low cost, and long shelf life, such CD200R1 agonistic aptamers may emerge as useful and safe nonsteroidal anti-inflammatory therapeutic agents.

18.
Chem Phys Lipids ; 166: 26-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23261795

RESUMO

The diacylglycerol kinase from E. coli transfers some of the γ-phosphate of ATP to water as well as to diacylglycerol. We also demonstrate that glycerol can act as an acceptor for the phosphate of ATP. We have compared this behavior with that of the only mammalian isoform of diacylglycerol kinase that exhibits acyl chain specificity, i.e. DGKɛ. The purpose of the study was to determine if differences in the competition between ATPase activity and lipid phosphorylation could contribute to the observed acyl chain specificity with different diacylglycerols. Neither with the highly specific substrate of DGKɛ, 1-stearoyl-2-arachidonoyl glycerol, nor with a less specific substrate, 1-stearoyl-2-linoleoyl glycerol, is there any evidence for ATP hydrolysis accompanying substrate phosphorylation. Thus, at least for this isoform of diacylglycerol kinase, water does not compete with diacylglycerol as an acceptor of the γ-phosphate of ATP. The results demonstrate that the substrate specificity of mammalian DGKɛ is not a consequence of different degrees of ATP hydrolysis in the presence of different species of diacylglycerol.


Assuntos
Trifosfato de Adenosina/metabolismo , Diacilglicerol Quinase/metabolismo , Diglicerídeos/metabolismo , Animais , Linhagem Celular , Escherichia coli/enzimologia , Humanos , Hidrólise , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Isoformas de Proteínas/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...