Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37896252

RESUMO

Generally, NSAIDs are weakly soluble in water and contain both hydrophilic and hydrophobic groups. One of the most widely used NSAIDs is ibuprofen, which has a poor solubility and high permeability profile. By creating dynamic, non-covalent, water-soluble inclusion complexes, cyclodextrins (CDs) can increase the dissolution rate of low aqueous solubility drugs, operating as a drug delivery vehicle, additionally contributing significantly to the chemical stability of pharmaceuticals and to reducing drug-related irritability. In order to improve the pharmacological and pharmacokinetics profile of ibuprofen, new thiazolidin-4-one derivatives of ibuprofen (4b, 4g, 4k, 4m) were complexed with ß-CD, using co-precipitation and freeze-drying. The new ß-CD complexes (ß-CD-4b, ß-CD-4g, ß-CD-4k, ß-CD-4m) were characterized using scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), X-ray diffraction and a phase solubility test. Using the AutoDock-VINA algorithm included in YASARA-structure software, we investigated the binding conformation of ibuprofen derivatives to ß-CD and measured the binding energies. We also performed an in vivo biological evaluation of the ibuprofen derivatives and corresponding ß-CD complexes, using analgesic/anti-inflammatory assays, as well as a release profile. The results support the theory that ß-CD complexes (ß-CD-4b, ß-CD-4g, ß-CD-4k, ß-CD-4m) have a similar effect to ibuprofen derivatives (4b, 4g, 4k, 4m). Moreover, the ß-CD complexes demonstrated a delayed release profile, which provides valuable insights into the drug-delivery area, focused on ibuprofen derivatives.

2.
Polymers (Basel) ; 15(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37688274

RESUMO

Wound management represents a well-known continuous challenge and concern of the global healthcare systems worldwide. The challenge is on the one hand related to the accurate diagnosis, and on the other hand to establishing an effective treatment plan and choosing appropriate wound care products in order to maximize the healing outcome and minimize the financial cost. The market of wound dressings is a dynamic field which grows and evolves continuously as a result of extensive research on developing versatile formulations with innovative properties. Hydrogels are one of the most attractive wound care products which, in many aspects, are considered ideal for wound treatment and are widely exploited for extension of their advantages in healing process. Smart hydrogels (SHs) offer the opportunities of the modulation physico-chemical properties of hydrogels in response to external stimuli (light, pressure, pH variations, magnetic/electric field, etc.) in order to achieve innovative behavior of their three-dimensional matrix (gel-sol transitions, self-healing and self-adapting abilities, controlled release of drugs). The SHs response to different triggers depends on their composition, cross-linking method, and manufacturing process approach. Both native or functionalized natural and synthetic polymers may be used to develop stimuli-responsive matrices, while the mandatory characteristics of hydrogels (biocompatibility, water permeability, bioadhesion) are preserved. In this review, we briefly present the physiopathology and healing mechanisms of chronic wounds, as well as current therapeutic approaches. The rational of using traditional hydrogels and SHs in wound healing, as well as the current research directions for developing SHs with innovative features, are addressed and discussed along with their limitations and perspectives in industrial-scale manufacturing.

3.
Pharmaceutics ; 15(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36986836

RESUMO

Wound management represents a continuous challenge for health systems worldwide, considering the growing incidence of wound-related comorbidities, such as diabetes, high blood pressure, obesity, and autoimmune diseases. In this context, hydrogels are considered viable options since they mimic the skin structure and promote autolysis and growth factor synthesis. Unfortunately, hydrogels are associated with several drawbacks, such as low mechanical strength and the potential toxicity of byproducts released after crosslinking reactions. To overcome these aspects, in this study new smart chitosan (CS)-based hydrogels were developed, using oxidized chitosan (oxCS) and hyaluronic acid (oxHA) as nontoxic crosslinkers. Three active product ingredients (APIs) (fusidic acid, allantoin, and coenzyme Q10), with proven biological effects, were considered for inclusion in the 3D polymer matrix. Therefore, six API-CS-oxCS/oxHA hydrogels were obtained. The presence of dynamic imino bonds in the hydrogels' structure, which supports their self-healing and self-adapting properties, was confirmed by spectral methods. The hydrogels were characterized by SEM, swelling degree, pH, and the internal organization of the 3D matrix was studied by rheological behavior. Moreover, the cytotoxicity degree and the antimicrobial effects were also investigated. In conclusion, the developed API-CS-oxCS/oxHA hydrogels have real potential as smart materials in wound management, based on their self-healing and self-adapting properties, as well as on the benefits of APIs.

4.
Pharmaceutics ; 14(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36297600

RESUMO

The study aim was to develop and validate a high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) method to simultaneously determine glibenclamide (Gli) and silymarin (Sil) released from chitosan (CS) microparticles in aqueous solutions. The CS microparticles were synthesized using an ionic gelation method, and their morphology, swelling degree, encapsulation efficiency and active substance release were investigated. Gli and Sil were loaded in different concentrations, and their identification and quantification were performed using the HPLC-ESI-MS method, which was further validated. The drugs' characteristic m/z was found in the higher intensity of retention time (Rt) (Gli, 8.909 min; Sil A, 5.41 min; and Sil B, 5.66 min). The method selectivity and precision are very good, and the blank solution proved no interference. The linearity of the answer function is very good for Sil A (R2 = 1), Sil B (R2 = 0.9998) and Gli (R2 = 0.9991). For Gli, we obtained a limit of detection (LOD) = 0.038 mg/mL and limit of quantification (LOQ) = 1.275 mg/mL; for Sil A, a LOD = 0.285 mg/mL and LOQ = 0.95 mg/mL; and for Sil B, a LOD = 0.045 mg/mL and LOQ = 0.15 mg/mL. A high-resolution HPLC-ESI-MS method was developed and validated, which allowed the simultaneous determination of Gli and Sil loaded in CS microparticles, in a concentration range of 0.025-1 mg/mL.

5.
Polymers (Basel) ; 14(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956710

RESUMO

This study presents the production, characterization, and application of celandine (Chelidonium majus L.) extracts (aqueous, acidic, alcoholic, and ultrasound) on wool fibers and their characterization. The study aims to obtain an ecologically dyed wool support that possesses biocompatible and antimicrobial activities. The plant extracts were characterized based on pH, total polyphenol content, and berberine content. Ecologically dyed wool supports were characterized based on scanning electron microscopy, levelness index, color measurements, contact angle indirect biocompatibility, and antibacterial analysis. According to the obtained results, celandine extract can be considered a potential candidate for the sustainable dyeing and functionalization of wool fibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...