Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 9(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799545

RESUMO

The availability of whole genome sequences in public databases permits genome-wide comparative studies of various bacterial species. Whole genome sequence-single nucleotide polymorphisms (WGS-SNP) analysis has been used in recent studies and allows the discrimination of various Brucella species and strains. In the present study, 13 Brucella spp. strains from cattle of various locations in provinces of South Africa were typed and discriminated. WGS-SNP analysis indicated a maximum pairwise distance ranging from 4 to 77 single nucleotide polymorphisms (SNPs) between the South African Brucella abortus virulent field strains. Moreover, it was shown that the South African B. abortus strains grouped closely to B. abortus strains from Mozambique and Zimbabwe, as well as other Eurasian countries, such as Portugal and India. WGS-SNP analysis of South African B. abortus strains demonstrated that the same genotype circulated in one farm (Farm 1), whereas another farm (Farm 2) in the same province had two different genotypes. This indicated that brucellosis in South Africa spreads within the herd on some farms, whereas the introduction of infected animals is the mode of transmission on other farms. Three B. abortus vaccine S19 strains isolated from tissue and aborted material were identical, even though they originated from different herds and regions of South Africa. This might be due to the incorrect vaccination of animals older than the recommended age of 4-8 months or might be a problem associated with vaccine production.

2.
Genome Biol ; 20(1): 244, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744546

RESUMO

BACKGROUND: The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function. RESULTS: Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas aureginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory. CONCLUSION: We conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens.


Assuntos
Anotação de Sequência Molecular/tendências , Animais , Biofilmes , Candida albicans/genética , Drosophila melanogaster/genética , Genoma Bacteriano , Genoma Fúngico , Humanos , Locomoção , Memória de Longo Prazo , Anotação de Sequência Molecular/métodos , Pseudomonas aeruginosa/genética
3.
Nucleic Acids Res ; 47(W1): W136-W141, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31114899

RESUMO

As the amount of genomic variation data increases, tools that are able to score the functional impact of single nucleotide variants become more and more necessary. While there are several prediction servers available for interpreting the effects of variants in the human genome, only few have been developed for other species, and none were specifically designed for species of veterinary interest such as the dog. Here, we present Fido-SNP the first predictor able to discriminate between Pathogenic and Benign single-nucleotide variants in the dog genome. Fido-SNP is a binary classifier based on the Gradient Boosting algorithm. It is able to classify and score the impact of variants in both coding and non-coding regions based on sequence features within seconds. When validated on a previously unseen set of annotated variants from the OMIA database, Fido-SNP reaches 88% overall accuracy, 0.77 Matthews correlation coefficient and 0.91 Area Under the ROC Curve.


Assuntos
Genoma/genética , Genômica , Polimorfismo de Nucleotídeo Único/genética , Software , Algoritmos , Animais , Cães , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Internet
4.
Nucleic Acids Res ; 46(W1): W459-W466, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29718411

RESUMO

Here, we present BUSCA (http://busca.biocomp.unibo.it), a novel web server that integrates different computational tools for predicting protein subcellular localization. BUSCA combines methods for identifying signal and transit peptides (DeepSig and TPpred3), GPI-anchors (PredGPI) and transmembrane domains (ENSEMBLE3.0 and BetAware) with tools for discriminating subcellular localization of both globular and membrane proteins (BaCelLo, MemLoci and SChloro). Outcomes from the different tools are processed and integrated for annotating subcellular localization of both eukaryotic and bacterial protein sequences. We benchmark BUSCA against protein targets derived from recent CAFA experiments and other specific data sets, reporting performance at the state-of-the-art. BUSCA scores better than all other evaluated methods on 2732 targets from CAFA2, with a F1 value equal to 0.49 and among the best methods when predicting targets from CAFA3. We propose BUSCA as an integrated and accurate resource for the annotation of protein subcellular localization.


Assuntos
Células Eucarióticas/química , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Células Procarióticas/química , Software , Bactérias/química , Bactérias/ultraestrutura , Benchmarking , Membrana Celular/química , Membrana Celular/ultraestrutura , Núcleo Celular/química , Núcleo Celular/ultraestrutura , Cloroplastos/química , Cloroplastos/ultraestrutura , Eucariotos/química , Eucariotos/ultraestrutura , Células Eucarióticas/ultraestrutura , Expressão Gênica , Ontologia Genética , Internet , Proteínas de Membrana/metabolismo , Mitocôndrias/química , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/metabolismo , Anotação de Sequência Molecular , Células Procarióticas/ultraestrutura , Sinais Direcionadores de Proteínas/genética
5.
BMC Genomics ; 18(Suppl 5): 554, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28812536

RESUMO

BACKGROUND: Genetic investigations, boosted by modern sequencing techniques, allow dissecting the genetic component of different phenotypic traits. These efforts result in the compilation of lists of genes related to diseases and show that an increasing number of diseases is associated with multiple genes. Investigating functional relations among genes associated with the same disease contributes to highlighting molecular mechanisms of the pathogenesis. RESULTS: We present eDGAR, a database collecting and organizing the data on gene/disease associations as derived from OMIM, Humsavar and ClinVar. For each disease-associated gene, eDGAR collects information on its annotation. Specifically, for lists of genes, eDGAR provides information on: i) interactions retrieved from PDB, BIOGRID and STRING; ii) co-occurrence in stable and functional structural complexes; iii) shared Gene Ontology annotations; iv) shared KEGG and REACTOME pathways; v) enriched functional annotations computed with NET-GE; vi) regulatory interactions derived from TRRUST; vii) localization on chromosomes and/or co-localisation in neighboring loci. The present release of eDGAR includes 2672 diseases, related to 3658 different genes, for a total number of 5729 gene-disease associations. 71% of the genes are linked to 621 multigenic diseases and eDGAR highlights their common GO terms, KEGG/REACTOME pathways, physical and regulatory interactions. eDGAR includes a network based enrichment method for detecting statistically significant functional terms associated to groups of genes. CONCLUSIONS: eDGAR offers a resource to analyze disease-gene associations. In multigenic diseases genes can share physical interactions and/or co-occurrence in the same functional processes. eDGAR is freely available at: edgar.biocomp.unibo.it.


Assuntos
Bases de Dados Genéticas , Doenças Genéticas Inatas/genética , Genômica/métodos , Mapas de Interação de Proteínas , Doenças Genéticas Inatas/metabolismo , Humanos , Redes e Vias Metabólicas , Anotação de Sequência Molecular
6.
Nucleic Acids Res ; 45(W1): W285-W290, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28453653

RESUMO

BAR 3.0 updates our server BAR (Bologna Annotation Resource) for predicting protein structural and functional features from sequence. We increase data volume, query capabilities and information conveyed to the user. The core of BAR 3.0 is a graph-based clustering procedure of UniProtKB sequences, following strict pairwise similarity criteria (sequence identity ≥40% with alignment coverage ≥90%). Each cluster contains the available annotation downloaded from UniProtKB, GO, PFAM and PDB. After statistical validation, GO terms and PFAM domains are cluster-specific and annotate new sequences entering the cluster after satisfying similarity constraints. BAR 3.0 includes 28 869 663 sequences in 1 361 773 clusters, of which 22.2% (22 241 661 sequences) and 47.4% (24 555 055 sequences) have at least one validated GO term and one PFAM domain, respectively. 1.4% of the clusters (36% of all sequences) include PDB structures and the cluster is associated to a hidden Markov model that allows building template-target alignment suitable for structural modeling. Some other 3 399 026 sequences are singletons. BAR 3.0 offers an improved search interface, allowing queries by UniProtKB-accession, Fasta sequence, GO-term, PFAM-domain, organism, PDB and ligand/s. When evaluated on the CAFA2 targets, BAR 3.0 largely outperforms our previous version and scores among state-of-the-art methods. BAR 3.0 is publicly available and accessible at http://bar.biocomp.unibo.it/bar3.


Assuntos
Anotação de Sequência Molecular , Análise de Sequência de Proteína , Software , Análise por Conglomerados , Internet , Proteínas/química , Proteínas/fisiologia
7.
Genome Biol ; 17(1): 184, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27604469

RESUMO

BACKGROUND: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. RESULTS: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. CONCLUSIONS: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent.


Assuntos
Biologia Computacional , Proteínas/química , Software , Relação Estrutura-Atividade , Algoritmos , Bases de Dados de Proteínas , Ontologia Genética , Humanos , Anotação de Sequência Molecular , Proteínas/genética
8.
Genes Nutr ; 11: 15, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27551316

RESUMO

BACKGROUND: Non-celiac wheat sensitivity is an emerging wheat-related syndrome showing peak prevalence in Western populations. Recent studies hypothesize that new gliadin alleles introduced in the human diet by replacement of ancient wheat with modern varieties can prompt immune responses mediated by the CXCR3-chemokine axis potentially underlying such pathogenic inflammation. This cultural shift may also explain disease epidemiology, having turned European-specific adaptive alleles previously targeted by natural selection into disadvantageous ones. METHODS: To explore this evolutionary scenario, we performed ultra-deep sequencing of genes pivotal in the CXCR3-inflammatory pathway on individuals diagnosed for non-celiac wheat sensitivity and we applied anthropological evolutionary genetics methods to sequence data from worldwide populations to investigate the genetic legacy of natural selection on these loci. RESULTS: Our results indicate that balancing selection has maintained two divergent CXCL10/CXCL11 haplotypes in Europeans, one responsible for boosting inflammatory reactions and another for encoding moderate chemokine expression. CONCLUSIONS: This led to considerably higher occurrence of the former haplotype in Western people than in Africans and East Asians, suggesting that they might be more prone to side effects related to the consumption of modern wheat varieties. Accordingly, this study contributed to shed new light on some of the mechanisms potentially involved in the disease etiology and on the evolutionary bases of its present-day epidemiological patterns. Moreover, overrepresentation of disease homozygotes for the dis-adaptive haplotype plausibly accounts for their even more enhanced CXCR3-axis expression and for their further increase in disease risk, representing a promising finding to be validated by larger follow-up studies.

9.
Nucleic Acids Res ; 44(D1): D38-47, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538599

RESUMO

Life sciences are yielding huge data sets that underpin scientific discoveries fundamental to improvement in human health, agriculture and the environment. In support of these discoveries, a plethora of databases and tools are deployed, in technically complex and diverse implementations, across a spectrum of scientific disciplines. The corpus of documentation of these resources is fragmented across the Web, with much redundancy, and has lacked a common standard of information. The outcome is that scientists must often struggle to find, understand, compare and use the best resources for the task at hand.Here we present a community-driven curation effort, supported by ELIXIR-the European infrastructure for biological information-that aspires to a comprehensive and consistent registry of information about bioinformatics resources. The sustainable upkeep of this Tools and Data Services Registry is assured by a curation effort driven by and tailored to local needs, and shared amongst a network of engaged partners.As of November 2015, the registry includes 1785 resources, with depositions from 126 individual registrations including 52 institutional providers and 74 individuals. With community support, the registry can become a standard for dissemination of information about bioinformatics resources: we welcome everyone to join us in this common endeavour. The registry is freely available at https://bio.tools.


Assuntos
Biologia Computacional , Sistema de Registros , Curadoria de Dados , Software
10.
Bioinformatics ; 31(23): 3841-3, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26231432

RESUMO

MOTIVATION: The next-generation sequencing era requires reliable, fast and efficient approaches for the accurate annotation of the ever-increasing number of biological sequences and their variations. Transfer of annotation upon similarity search is a standard approach. The procedure of all-against-all protein comparison is a preliminary step of different available methods that annotate sequences based on information already present in databases. Given the actual volume of sequences, methods are necessary to pre-process data to reduce the time of sequence comparison. RESULTS: We present an algorithm that optimizes the partition of a large volume of sequences (the whole database) into sets where sequence length values (in residues) are constrained depending on a bounded minimal and expected alignment coverage. The idea is to optimally group protein sequences according to their length, and then computing the all-against-all sequence alignments among sequences that fall in a selected length range. We describe a mathematically optimal solution and we show that our method leads to a 5-fold speed-up in real world cases. AVAILABILITY AND IMPLEMENTATION: The software is available for downloading at http://www.biocomp.unibo.it/∼giuseppe/partitioning.html. CONTACT: giuseppe.profiti2@unibo.it. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Biologia Computacional/métodos , Bases de Dados de Proteínas , Proteínas/química , Alinhamento de Sequência/métodos , Software , Humanos
11.
Database (Oxford) ; 2013: bat065, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24065691

RESUMO

Given the relevance of the pig proteome in different studies, including human complex maladies, a statistical validation of the annotation is required for a better understanding of the role of specific genes and proteins in the complex networks underlying biological processes in the animal. Presently, approximately 80% of the pig proteome is still poorly annotated, and the existence of protein sequences is routinely inferred automatically by sequence alignment towards preexisting sequences. In this article, we introduce SUS-BAR, a database that derives information mainly from UniProt Knowledgebase and that includes 26 206 pig protein sequences. In SUS-BAR, 16 675 of the pig protein sequences are endowed with statistically validated functional and structural annotation. Our statistical validation is determined by adopting a cluster-centric annotation procedure that allows transfer of different types of annotation, including structure and function. Each sequence in the database can be associated with a set of statistically validated Gene Ontologies (GOs) of the three main sub-ontologies (Molecular Function, Biological Process and Cellular Component), with Pfam functional domains, and when possible, with a cluster Hidden Markov Model that allows modelling the 3D structure of the protein. A database search allows some statistics demonstrating the enrichment in both GO and Pfam annotations of the pig proteins as compared with UniProt Knowledgebase annotation. Searching in SUS-BAR allows retrieval of the pig protein annotation for further analysis. The search is also possible on the basis of specific GO terms and this allows retrieval of all the pig sequences participating into a given biological process, after annotation with our system. Alternatively, the search is possible on the basis of structural information, allowing retrieval of all the pig sequences with the same structural characteristics.


Assuntos
Bases de Dados de Proteínas , Anotação de Sequência Molecular , Estatística como Assunto , Sus scrofa/metabolismo , Animais , Ontologia Genética , Humanos , Proteoma/genética , Reprodutibilidade dos Testes , Interface Usuário-Computador
12.
BMC Bioinformatics ; 14 Suppl 3: S4, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23514411

RESUMO

BACKGROUND: In the genomic era a key issue is protein annotation, namely how to endow protein sequences, upon translation from the corresponding genes, with structural and functional features. Routinely this operation is electronically done by deriving and integrating information from previous knowledge. The reference database for protein sequences is UniProtKB divided into two sections, UniProtKB/TrEMBL which is automatically annotated and not reviewed and UniProtKB/Swiss-Prot which is manually annotated and reviewed. The annotation process is essentially based on sequence similarity search. The question therefore arises as to which extent annotation based on transfer by inheritance is valuable and specifically if it is possible to statistically validate inherited features when little homology exists among the target sequence and its template(s). RESULTS: In this paper we address the problem of annotating protein sequences in a statistically validated manner considering as a reference annotation resource UniProtKB. The test case is the set of 48,298 proteins recently released by the Critical Assessment of Function Annotations (CAFA) organization. We show that we can transfer after validation, Gene Ontology (GO) terms of the three main categories and Pfam domains to about 68% and 72% of the sequences, respectively. This is possible after alignment of the CAFA sequences towards BAR+, our annotation resource that allows discriminating among statistically validated and not statistically validated annotation. By comparing with a direct UniProtKB annotation, we find that besides validating annotation of some 78% of the CAFA set, we assign new and statistically validated annotation to 14.8% of the sequences and find new structural templates for about 25% of the chains, half of which share less than 30% sequence identity to the corresponding template/s. CONCLUSION: Inheritance of annotation by transfer generally requires a careful selection of the identity value among the target and the template in order to transfer structural and/or functional features. Here we prove that even distantly remote homologs can be safely endowed with structural templates and GO and/or Pfam terms provided that annotation is done within clusters collecting cluster-related protein sequences and where a statistical validation of the shared structural and functional features is possible.


Assuntos
Anotação de Sequência Molecular , Análise de Sequência de Proteína , Análise por Conglomerados , Interpretação Estatística de Dados , Bases de Dados de Proteínas , Genômica , Proteínas/genética , Proteínas/fisiologia , Vocabulário Controlado
13.
BMC Bioinformatics ; 13 Suppl 14: S10, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23095498

RESUMO

BACKGROUND: Magnesium research is increasing in molecular medicine due to the relevance of this ion in several important biological processes and associated molecular pathogeneses. It is still difficult to predict from the protein covalent structure whether a human chain is or not involved in magnesium binding. This is mainly due to little information on the structural characteristics of magnesium binding sites in proteins and protein complexes. Magnesium binding features, differently from those of other divalent cations such as calcium and zinc, are elusive. Here we address a question that is relevant in protein annotation: how many human proteins can bind Mg2+? Our analysis is performed taking advantage of the recently implemented Bologna Annotation Resource (BAR-PLUS), a non hierarchical clustering method that relies on the pair wise sequence comparison of about 14 millions proteins from over 300.000 species and their grouping into clusters where annotation can safely be inherited after statistical validation. RESULTS: After cluster assignment of the latest version of the human proteome, the total number of human proteins for which we can assign putative Mg binding sites is 3,751. Among these proteins, 2,688 inherit annotation directly from human templates and 1,063 inherit annotation from templates of other organisms. Protein structures are highly conserved inside a given cluster. Transfer of structural properties is possible after alignment of a given sequence with the protein structures that characterise a given cluster as obtained with a Hidden Markov Model (HMM) based procedure. Interestingly a set of 370 human sequences inherit Mg2+ binding sites from templates sharing less than 30% sequence identity with the template. CONCLUSION: We describe and deliver the "human magnesome", a set of proteins of the human proteome that inherit putative binding of magnesium ions. With our BAR-hMG, 251 clusters including 1,341 magnesium binding protein structures corresponding to 387 sequences are sufficient to annotate some 13,689 residues in 3,751 human sequences as "magnesium binding". Protein structures act therefore as three dimensional seeds for structural and functional annotation of human sequences. The data base collects specifically all the human proteins that can be annotated according to our procedure as "magnesium binding", the corresponding structures and BAR+ clusters from where they derive the annotation (http://bar.biocomp.unibo.it/mg).


Assuntos
Análise por Conglomerados , Magnésio , Proteínas/química , Proteoma/análise , Sítios de Ligação , Humanos , Modelos Moleculares , Anotação de Sequência Molecular , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...