Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 442, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200029

RESUMO

In quantum magnetic materials, ordered phases induced by an applied magnetic field can be described as the Bose-Einstein condensation (BEC) of magnon excitations. In the strongly frustrated system SrCu2(BO3)2, no clear magnon BEC could be observed, pointing to an alternative mechanism, but the high fields required to probe this physics have remained a barrier to detailed investigation. Here we exploit the first purpose-built high-field neutron scattering facility to measure the spin excitations of SrCu2(BO3)2 up to 25.9 T and use cylinder matrix-product-states (MPS) calculations to reproduce the experimental spectra with high accuracy. Multiple unconventional features point to a condensation of S = 2 bound states into a spin-nematic phase, including the gradients of the one-magnon branches and the persistence of a one-magnon spin gap. This gap reflects a direct analogy with superconductivity, suggesting that the spin-nematic phase in SrCu2(BO3)2 is best understood as a condensate of bosonic Cooper pairs.

2.
Phys Rev Lett ; 131(11): 116002, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774302

RESUMO

The extremely overdoped cuprates are generally considered to be Fermi liquid metals without exotic orders, whereas the underdoped cuprates harbor intertwined states. Contrary to this conventional wisdom, using Cu L_{3}-edge and O K-edge resonant x-ray scattering, we reveal a charge order (CO) correlation in overdoped La_{2-x}Sr_{x}CuO_{4} (0.35≤x≤0.6) beyond the superconducting dome. This CO has a periodicity of ∼6 lattice units with correlation lengths of ∼20 lattice units. It shows similar in-plane momentum and polarization dependence and dispersive excitations as the CO of underdoped cuprates, but its maximum intensity differs along the c direction and persists up to 300 K. This CO correlation cannot be explained by the Fermi surface instability and its origin remains to be understood. Our results suggest that CO is prevailing in the overdoped metallic regime and requires a reassessment of the picture of overdoped cuprates as weakly correlated Fermi liquids.

3.
J Appl Crystallogr ; 55(Pt 5): 1314-1323, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36249498

RESUMO

Bragg diffracted intensities and q values for crystalline structures with long repeat distances may be obtained by small-angle neutron scattering (SANS) investigations. An account is given of the methods, advantages and disadvantages of obtaining such data by the multichromatic time-of-flight method, compared with the more traditional quasi-monochromatic SANS method. This is illustrated with data obtained from high-magnetic-field measurements on magnetic vortex line lattices in superconductors on the former HFM/EXED instrument at Helmholtz-Zentrum Berlin. The methods have application to other mesoscopic crystalline structures investigated by SANS instruments at pulsed sources.

4.
J Appl Crystallogr ; 53(Pt 6): 1613-1619, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33304227

RESUMO

The Extreme Environment Diffractometer was a neutron time-of-flight instrument equipped with a constant-field hybrid magnet providing magnetic fields up to 26 T. The magnet infrastructure and sample environment imposed limitations on the geometry of the experiment, making it necessary to plan the experiment with care. EXEQ is the software tool developed to allow users of the instrument to find the optimal sample orientation for their diffraction experiment. InEXEQ fulfilled the same role for the inelastic neutron scattering experiments. The source code of the software is licensed under the GNU General Public Licence 3, allowing it to be used by other facilities and adapted for use on other instruments.

5.
J Phys Condens Matter ; 29(22): 225802, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28337973

RESUMO

A detailed diffraction study of Ca10Cr7O28 is presented which adds significant new insights into the structural and magnetic properties of this compound. A new crystal structure type was used where the a and b axes are doubled compared to previous models providing a more plausible structure where all crystallographic sites are fully occupied. The presence of two different valences of chromium was verified and the locations of the magnetic Cr5+ and non-magnetic Cr6+ ions were identified. The Cr5+ ions have spin-[Formula: see text] and form distorted kagome bilayers which are stacked in an ABC arrangement along the c axis. These results lay the foundation for understanding of the quantum spin liquid behavior in Ca10Cr7O28 which has recently been reported in Balz et al (2016 Nat. Phys. 12 942).

6.
Rev Sci Instrum ; 86(3): 033102, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25832206

RESUMO

The Extreme Environment Diffractometer (EXED) is a new neutron time-of-flight instrument at the BER II research reactor at the Helmholtz-Zentrum Berlin, Germany. Although EXED is a special-purpose instrument, its early construction made it available for users as a general-purpose diffractometer. In this respect, EXED became one of the rare examples, where the performance of a time-of-flight diffractometer at a continuous source can be characterized. In this paper, we report on the design and performance of EXED with an emphasis on the unique instrument capabilities. The latter comprise variable wavelength resolution and wavelength band, control of the incoming beam divergence, the possibility to change the angular positions of detectors and their distance to the sample, and use of event recording and offline histogramming. These features combined make EXED easily tunable to the requirements of a particular problem, from conventional diffraction to small angle neutron scattering. The instrument performance is demonstrated by several reference measurements and user experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...