Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
NMR Biomed ; : e5155, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38616046

RESUMO

Methods for early treatment response evaluation to systemic therapy of liver metastases are lacking. Tumor tissue often exhibits an increased ratio of phosphomonoesters to phosphodiesters (PME/PDE), which can be noninvasively measured by phosphorus magnetic resonance spectroscopy (31P MRS), and may be a marker for early therapy response assessment in liver metastases. However, with commonly used 31P surface coils for liver 31P MRS, the liver is not fully covered, and metastases may be missed. The objective of this study was to demonstrate the feasibility of 31P MRS imaging (31P MRSI) with full liver coverage to assess 31P metabolite levels and chemotherapy-induced changes in liver metastases of gastro-esophageal cancer, using a 31P whole-body birdcage transmit coil in combination with a 31P body receive array at 7 T. 3D 31P MRSI data were acquired in two patients with hepatic metastases of esophageal cancer, before the start of chemotherapy and after 2 (and 9 in patient 2) weeks of chemotherapy. 3D 31P MRSI acquisitions were performed using an integrated 31P whole-body transmit coil in combination with a 16-channel body receive array at 7 T, with a field of view covering the full abdomen and a nominal voxel size of 20-mm isotropic. From the 31P MRSI data, 12 31P metabolite signals were quantified. Prior to chemotherapy initiation, both PMEs, that is, phosphocholine (PC) and phosphoethanolamine (PE), were significantly higher in all metastases compared with the levels previously determined in the liver of healthy volunteers. After 2 weeks of chemotherapy, PC and PE levels remained high or even increased further, resulting in increased PME/PDE ratios compared with healthy liver tissue, in correspondence with the clinical assessment of progressive disease after 2 months of chemotherapy. The suggested approach may present a viable tool for early therapy (non)response assessment of tumor metabolism in patients with liver metastases.

2.
J Magn Reson Imaging ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485455

RESUMO

BACKGROUND: Non-invasive evaluation of phosphomonoesters (PMEs) and phosphodiesters (PDEs) by 31-phosphorus MR spectroscopy (31 P MRS) may have potential for early therapy (non-)response assessment in cancer. However, 31 P MRS has not yet been applied to investigate the human pancreas in vivo. PURPOSE: To assess the technical feasibility and repeatability of 31 P MR spectroscopic imaging (MRSI) of the pancreas, compare 31 P metabolite levels between pancreas and liver, and determine the feasibility of 31 P MRSI in pancreatic cancer. STUDY TYPE: Prospective cohort study. POPULATION: 10 healthy subjects (age 34 ± 12 years, four females) and one patient (73-year-old female) with pancreatic ductal adenocarcinoma. FIELD STRENGTH/SEQUENCE: 7-T, 31 P FID-MRSI, 1 H gradient-echo MRI. ASSESSMENT: 31 P FID-MRSI of the abdomen (including the pancreas and liver) was performed with a nominal voxel size of 20 mm (isotropic). For repeatability measurements, healthy subjects were scanned twice on the same day. The patient was only scanned once. Test-retest 31 P MRSI data of pancreas and liver voxels (segmented on 1 H MRI) of healthy subjects were quantified by fitting in the time domain and signal amplitudes were normalized to γ-adenosine triphosphate. In addition, the PME/PDE ratio was calculated. Metabolite levels were averaged over all voxels within the pancreas, right liver lobe and left liver lobe, respectively. STATISTICAL TESTS: Repeatability of test-retest data from healthy pancreas was assessed by paired t-tests, Bland-Altman analyses, and calculation of the intrasubject coefficients of variation (CoVs). Significant differences between healthy pancreas and right and left liver lobes were assessed with a two-way analysis of variance (ANOVA) for repeated measures. A P-value <0.05 was considered statistically significant. RESULTS: The intrasubject CoVs for PME, PDE, and PME/PDE in healthy pancreas were below 20%. Furthermore, PME and PME/PDE were significantly higher in pancreas compared to liver. In the patient with pancreatic cancer, qualitatively, elevated relative PME signals were observed in comparison with healthy pancreas. DATA CONCLUSION: In vivo 31 P MRSI of the human healthy pancreas and in pancreatic cancer may be feasible at 7 T. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.

4.
Front Physiol ; 14: 1198578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465695

RESUMO

Chronic intake of high amounts of fructose has been linked to the development of metabolic disorders, which has been attributed to the almost complete clearance of fructose by the liver. However, direct measurement of hepatic fructose uptake is complicated by the fact that the portal vein is difficult to access. Here we present a new, non-invasive method to measure hepatic fructose uptake and metabolism with the use of deuterium metabolic imaging (DMI) upon administration of [6,6'-2H2]fructose. Using both [6,6'-2H2]glucose and [6,6'-2H2]fructose, we determined differences in the uptake and metabolism of glucose and fructose in the mouse liver with dynamic DMI. The deuterated compounds were administered either by fast intravenous (IV) bolus injection or by slow IV infusion. Directly after IV bolus injection of [6,6'-2H2]fructose, a more than two-fold higher initial uptake and subsequent 2.5-fold faster decay of fructose was observed in the mouse liver as compared to that of glucose after bolus injection of [6,6'-2H2]glucose. In contrast, after slow IV infusion of fructose, the 2H fructose/glucose signal maximum in liver spectra was lower compared to the 2H glucose signal maximum after slow infusion of glucose. With both bolus injection and slow infusion protocols, deuterium labeling of water was faster with fructose than with glucose. These observations are in line with a higher extraction and faster turnover of fructose in the liver, as compared with glucose. DMI with [6,6'-2H2]glucose and [6,6'-2H2]fructose could potentially contribute to a better understanding of healthy human liver metabolism and aberrations in metabolic diseases.

5.
Elife ; 122023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37338964

RESUMO

Intercellular signalling is an indispensable part of multicellular life. Understanding the commonalities and differences in how signalling molecules function in two remote branches of the tree of life may shed light on the reasons these molecules were originally recruited for intercellular signalling. Here we review the plant function of three highly studied animal intercellular signalling molecules, namely glutamate, γ-aminobutyric acid (GABA), and melatonin. By considering both their signalling function in plants and their broader physiological function, we suggest that molecules with an original function as key metabolites or active participants in reactive ion species scavenging have a high chance of becoming intercellular signalling molecules. Naturally, the evolution of machinery to transduce a message across the plasma membrane is necessary. This fact is demonstrated by three other well-studied animal intercellular signalling molecules, namely serotonin, dopamine, and acetylcholine, for which there is currently no evidence that they act as intercellular signalling molecules in plants.


Assuntos
Melatonina , Animais , Melatonina/metabolismo , Ácido Glutâmico/metabolismo , Plantas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Transdução de Sinais
6.
Magn Reson Med ; 90(3): 863-874, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37154391

RESUMO

PURPOSE: To demonstrate the feasibility of deuterium echo-planar spectroscopic imaging (EPSI) to accelerate 3D deuterium metabolic imaging in the human liver at 7 T. METHODS: A deuterium EPSI sequence, featuring a Hamming-weighted k-space acquisition pattern for the phase-encoding directions, was implemented. Three-dimensional deuterium EPSI and conventional MRSI were performed on a water/acetone phantom and in vivo in the human liver at natural abundance. Moreover, in vivo deuterium EPSI measurements were acquired after oral administration of deuterated glucose. The effect of acquisition time on SNR was evaluated by retrospectively reducing the number of averages. RESULTS: The SNR of natural abundance deuterated water signal in deuterium EPSI was 6.5% and 5.9% lower than that of MRSI in the phantom and in vivo experiments, respectively. In return, the acquisition time of in vivo EPSI data could be reduced retrospectively to 2 min, beyond the minimal acquisition time of conventional MRSI (of 20 min in this case), while still leaving sufficient SNR. Three-dimensional deuterium EPSI, after administration of deuterated glucose, enabled monitoring of hepatic glucose dynamics with full liver coverage, a spatial resolution of 20 mm isotropic, and a temporal resolution of 9 min 50 s, which could retrospectively be shortened to 2 min. CONCLUSION: In this work, we demonstrate the feasibility of accelerated 3D deuterium metabolic imaging of the human liver using deuterium EPSI. The acceleration obtained with EPSI can be used to increase temporal and/or spatial resolution, which will be valuable to study tissue metabolism of deuterated compounds over time.


Assuntos
Imagem Ecoplanar , Fígado , Humanos , Deutério , Estudos Retrospectivos , Imagem Ecoplanar/métodos , Espectroscopia de Ressonância Magnética , Fígado/diagnóstico por imagem , Encéfalo
7.
NMR Biomed ; 36(8): e4926, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36929629

RESUMO

Deuterium metabolic imaging (DMI) is a novel noninvasive method to assess tissue metabolism and organ (patho)physiology in vivo using deuterated substrates, such as [6,6'-2 H2 ]-glucose. The liver and kidneys play a central role in whole-body glucose homeostasis, and in type 2 diabetes, both hepatic and renal glucose metabolism are dysregulated. Diabetes is also associated with gastric emptying abnormalities. In this study, we developed a four-channel 2 H transmit/receive body array coil for DMI in the human abdomen at 7 T and assessed its performance. In addition, the feasibility of simultaneously measuring gastric emptying, and hepatic and renal glucose uptake and metabolism with dynamic 3D DMI upon administration of deuterated glucose, was investigated. Simulated and measured B1 + patterns were in good agreement. The intrasession variability of the natural abundance deuterated water signal in the liver and right kidney, measured in nine healthy volunteers, was 5.6% ± 0.9% and 4.9% ± 0.7%, respectively. Dynamic 3D DMI scans with oral administration of [6,6'-2 H2 ]-glucose showed similar kinetics of deuterated glucose appearance and disappearance in the liver and kidney. The measured gastric emptying half time was 80 ± 10 min, which is in good agreement with scintigraphy measurements. In conclusion, DMI with oral administration of [6,6'-2 H2 ]-glucose enables simultaneous assessment of gastric emptying and liver and kidney glucose uptake and metabolism. When applied in patients with diabetes, this approach may advance our understanding of the interplay between disturbances in liver and kidney glucose uptake and metabolism and gastric emptying, at a detail that cannot be achieved by any other method.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Humanos , Glucose/metabolismo , Esvaziamento Gástrico/fisiologia , Deutério , Fígado/diagnóstico por imagem , Fígado/metabolismo , Rim/diagnóstico por imagem , Rim/metabolismo
8.
NMR Biomed ; 36(5): e4877, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36400716

RESUMO

Quantitative three-dimensional (3D) imaging of phosphorus (31 P) metabolites is potentially a promising technique with which to assess the progression of liver disease and monitor therapy response. However, 31 P magnetic resonance spectroscopy has a low sensitivity and commonly used 31 P surface coils do not provide full coverage of the liver. This study aimed to overcome these limitations by using a 31 P whole-body transmit coil in combination with a 16-channel 31 P receive array at 7 T. Using this setup, we determined the repeatability of whole-liver 31 P magnetic resonance spectroscopic imaging (31 P MRSI) in healthy subjects and assessed the effects of principal component analysis (PCA)-based denoising on the repeatability parameters. In addition, spatial variations of 31 P metabolites within the liver were analyzed. 3D 31 P MRSI data of the liver were acquired with a nominal voxel size of 20 mm isotropic in 10 healthy volunteers twice on the same day. Data were reconstructed without denoising, and with PCA-based denoising before or after channel combination. From the test-retest data, repeatability parameters for metabolite level quantification were determined for 12 31 P metabolite signals. On average, 31 P MR spectra from 100 ± 25 voxels in the liver were analyzed. Only voxels with contamination from skeletal muscle or the gall bladder were excluded and no voxels were discarded based on (low) signal-to-noise ratio (SNR). Repeatability for most quantified 31 P metabolite levels in the liver was good to excellent, with an intrasubject variability below 10%. PCA-based denoising increased the SNR ~ 3-fold, but did not improve the repeatability for mean liver 31 P metabolite quantification with the fitting constraints used. Significant spatial heterogeneity of various 31 P metabolite levels within the liver was observed, with marked differences for the phosphomonoester and phosphodiester metabolites between the left and right lobe. In conclusion, using a 31 P whole-body transmit coil in combination with a 16-channel 31 P receive array at 7 T allowed 31 P MRSI acquisitions with full liver coverage and good to excellent repeatability.


Assuntos
Imageamento por Ressonância Magnética , Fósforo , Humanos , Fósforo/metabolismo , Análise de Componente Principal , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Fígado/metabolismo , Razão Sinal-Ruído
9.
NMR Biomed ; 36(4): e4882, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36451530

RESUMO

Patient-derived cancer cells cultured in vitro are a cornerstone of cancer metabolism research. More recently, the introduction of organoids has provided the research community with a more versatile model system. Physiological structure and organization of the cell source tissue are maintained in organoids, representing a closer link to in vivo tumor models. High-resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS) is a commonly applied analytical approach for metabolic profiling of intact tissue, but its use has not been reported for organoids. The aim of the current work was to compare the performance of HR MAS MRS and extraction-based nuclear magnetic resonance (NMR) in metabolic profiling of wild-type and tumor progression organoids (TPOs) from human colon cancer, and further to investigate how the sequentially increased genetic alterations of the TPOs affect the metabolic profile. Sixteen metabolites were reliably identified and quantified both in spectra based on NMR of extracts and HR MAS MRS of intact organoids. The metabolite concentrations from the two approaches were highly correlated (r = 0.94), and both approaches were able to capture the systematic changes in metabolic features introduced by the genetic alterations characteristic of colorectal cancer progression (e.g., increased levels of lactate and decreased levels of myo-inositol and phosphocholine with an increasing number of mutations). The current work highlights that HR MAS MRS is a well-suited method for metabolic profiling of intact organoids, with the additional benefit that the nondestructive nature of HR MAS enables subsequent recovery of the organoids for further analyses based on nucleic acids or proteins.


Assuntos
Neoplasias Colorretais , Metabolômica , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Metaboloma
10.
J Magn Reson Imaging ; 57(4): 1144-1155, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35916278

RESUMO

BACKGROUND: The incidence of liver and pancreatic cancer is rising. Patients benefit from current treatments, but there are limitations in the evaluation of (early) response to treatment. Tumor metabolic alterations can be measured noninvasively with phosphorus (31 P) magnetic resonance spectroscopy (MRS). PURPOSE: To conduct a quantitative analysis of the available literature on 31 P MRS performed in hepatopancreatobiliary cancer and to provide insight into its current and potential for therapy (non-) response assessment. POPULATION: Patients with hepatopancreatobiliary cancer. FIELD STRENGTH/SEQUENCE: 31 P MRS. ASSESSMENT: The PubMed, EMBASE, and Cochrane library databases were systematically searched for studies published to 17 March 17, 2022. All 31 P MRS studies in hepatopancreatobiliary cancer reporting 31 P metabolite levels were included. STATISTICAL TESTS: Relative differences in 31 P metabolite levels/ratios between patients before therapy and healthy controls, and the relative changes in 31 P metabolite levels/ratios in patients before and after therapy were determined. RESULTS: The search yielded 10 studies, comprising 301 subjects, of whom 132 (44%) healthy volunteers and 169 (56%) patients with liver cancer of various etiology. To date, 31 P MRS has not been applied in pancreatic cancer. In liver cancer, alterations in levels of 31 P metabolites involved in cell proliferation (phosphomonoesters [PMEs] and phosphodiesters [PDEs]) and energy metabolism (ATP and inorganic phosphate [Pi]) were observed. In particular, liver tumors were associated with elevations of PME/PDE and PME/Pi compared to healthy liver tissue, although there was a broad variety among studies (elevations of 2%-267% and 21%-233%, respectively). Changes in PME/PDE in liver tumors upon therapy were substantial, yet very heterogeneous and both decreases and increases were observed, whereas PME/Pi was consistently decreased after therapy in all studies (-13% to -76%). DATA CONCLUSION: 31 P MRS has great potential for treatment monitoring in oncology. Future studies are needed to correlate the changes in 31 P metabolite levels in hepatopancreatobiliary tumors with treatment response. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Espectroscopia de Ressonância Magnética/métodos , Fósforo , Organofosfatos
11.
Metabolites ; 12(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36557261

RESUMO

The liver plays an important role in whole-body glucose homeostasis by taking up glucose from and releasing glucose into the blood circulation. In the postprandial state, excess glucose in the blood circulation is stored in hepatocytes as glycogen. In the postabsorptive state, the liver produces glucose by breaking down glycogen and from noncarbohydrate precursors such as lactate. In metabolic diseases such as diabetes, these processes are dysregulated, resulting in abnormal blood glucose levels. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are noninvasive techniques that give unique insight into different aspects of glucose metabolism, such as glycogenesis, glycogenolysis, and gluconeogenesis, in the liver in vivo. Using these techniques, liver glucose metabolism has been studied in regard to a variety of interventions, such as fasting, meal intake, and exercise. Moreover, deviations from normal hepatic glucose metabolism have been investigated in both patients with type 1 and 2 diabetes, as well as the effects of antidiabetic medications. This review provides an overview of current MR techniques to measure hepatic glucose metabolism and the insights obtained by the application of these techniques in the healthy and diabetic liver.

12.
Magn Reson Med ; 87(3): 1165-1173, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34657308

RESUMO

PURPOSE: Deuterium metabolic imaging could potentially be used to investigate metabolism in skeletal muscle noninvasively. However, skeletal muscle is a tissue with a high degree of spatial organization. In this study, we investigated the effect of incomplete motional averaging on the naturally abundant deuterated water signal in 7 Tesla deuterium spectra of the lower leg muscles and the dependence on the angle between the muscle fibers and the main magnetic field B0 , as determined by DTI. METHODS: Natural abundance deuterium MRSI measurements of the right lower leg muscles were performed at 7 Tesla. Three subjects were scanned in a supine position, with the right leg parallel with the B0 field. One subject was scanned twice; during the second scan, the subject was laying on his right side and the right knee was bent such that the angle between the right lower leg and B0 was approximately 45°. DTI was performed in the same subjects in the same positions at 3 Tesla to determine muscle fiber angles. RESULTS: We observed splittings in the natural abundance deuterated water signal. The size of the splittings varied between different muscles in the lower leg but were mostly similar among subjects for each muscle. The splittings depended on the orientation of the muscle fibers with respect to the main magnetic field B0 . CONCLUSION: Partial molecular alignment in skeletal muscle leads to residual deuteron quadrupolar couplings in deuterated water, the size of which depends on the angle between the muscle fibers and B0 .


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Deutério , Humanos , Extremidade Inferior , Músculo Esquelético/diagnóstico por imagem
13.
Magn Reson Med ; 85(6): 2992-3009, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33522635

RESUMO

PURPOSE: This study evaluates the performance of 2 processing methods, that is, principal component analysis-based denoising and Wiener deconvolution, to enhance the quality of phosphorus 3D chemical shift imaging data. METHODS: Principal component analysis-based denoising increases the SNR while maintaining spectral information. Wiener deconvolution reduces the FWHM of the voxel point spread function, which is increased by Hamming filtering or Hamming-weighted acquisition. The proposed methods are evaluated using simulated and in vivo 3D phosphorus chemical shift imaging data by 1) visual inspection of the spatial signal distribution; 2) SNR calculation of the PCr peak; and 3) fitting of metabolite basis functions. RESULTS: With the optimal order of processing steps, we show that the effective SNR of in vivo phosphorus 3D chemical shift imaging data can be increased. In simulations, we show we can preserve phosphorus-containing metabolite peaks that had an SNR < 1 before denoising. Furthermore, using Wiener deconvolution, we were able to reduce the FWHM of the voxel point spread function with only partially reintroducing Gibb-ringing artifacts while maintaining the SNR. After data processing, fitting of the phosphorus-containing metabolite signals improved. CONCLUSION: In this study, we have shown that principal component analysis-based denoising in combination with regularized Wiener deconvolution allows increasing the effective spectral SNR of in vivo phosphorus 3D chemical shift imaging data, with reduction of the FWHM of the voxel point spread function. Processing increased the effective SNR by at least threefold compared to Hamming weighted acquired data and minimized voxel bleeding. With these methods, fitting of metabolite amplitudes became more robust with decreased fitting residuals.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Análise de Componente Principal , Razão Sinal-Ruído
14.
NMR Biomed ; 33(8): e4343, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515151

RESUMO

INTRODUCTION: Single-voxel 1 H MRS in body applications often suffers from respiratory and other motion induced phase and frequency shifts, which lead to incoherent averaging and hence to suboptimal results. METHODS: Here we show the application of metabolite cycling (MC) for liver STEAM-localized 1 H MRS on a 7 T parallel transmit system, using eight transmit-receive fractionated dipole antennas with 16 additional, integrated receive loops. MC-STEAM measurements were made in six healthy, lean subjects and compared with STEAM measurements using VAPOR water suppression. Measurements were performed during free breathing and during synchronized breathing, for which the subjects did breathe in between the MRS acquisitions. Both intra-session repeatability and inter-session reproducibility of liver lipid quantification with MC-STEAM and VAPOR-STEAM were determined. RESULTS: The preserved water signal in MC-STEAM allowed for robust phase and frequency correction of individual acquisitions before averaging, which resulted in in vivo liver spectra that were of equal quality when measurements were made with free breathing or synchronized breathing. Intra-session repeatability and inter-session reproducibility of liver lipid quantification were better for MC-STEAM than for VAPOR-STEAM. This may also be explained by the more robust phase and frequency correction of the individual MC-STEAM acquisitions as compared with the VAPOR-STEAM acquisitions, for which the low-signal-to-noise ratio lipid signals had to be used for the corrections. CONCLUSION: Non-water-suppressed MC-STEAM on a 7 T system with parallel transmit is a promising approach for 1 H MRS applications in the body that are affected by motion, such as in the liver, and yields better repeatability and reproducibility compared with water-suppressed measurements.


Assuntos
Fígado/diagnóstico por imagem , Espectroscopia de Ressonância Magnética/métodos , Adulto , Composição Corporal , Fígado Gorduroso/diagnóstico por imagem , Feminino , Humanos , Lipídeos/análise , Fígado/química , Espectroscopia de Ressonância Magnética/instrumentação , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Imagens de Fantasmas , Reprodutibilidade dos Testes , Respiração , Razão Sinal-Ruído
15.
NMR Biomed ; : e4246, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32037688

RESUMO

Skeletal muscle phosphorus-31 31 P MRS is the oldest MRS methodology to be applied to in vivo metabolic research. The technical requirements of 31 P MRS in skeletal muscle depend on the research question, and to assess those questions requires understanding both the relevant muscle physiology, and how 31 P MRS methods can probe it. Here we consider basic signal-acquisition parameters related to radio frequency excitation, TR, TE, spectral resolution, shim and localisation. We make specific recommendations for studies of resting and exercising muscle, including magnetisation transfer, and for data processing. We summarise the metabolic information that can be quantitatively assessed with 31 P MRS, either measured directly or derived by calculations that depend on particular metabolic models, and we give advice on potential problems of interpretation. We give expected values and tolerable ranges for some measured quantities, and minimum requirements for reporting acquisition parameters and experimental results in publications. Reliable examination depends on a reproducible setup, standardised preconditioning of the subject, and careful control of potential difficulties, and we summarise some important considerations and potential confounders. Our recommendations include the quantification and standardisation of contraction intensity, and how best to account for heterogeneous muscle recruitment. We highlight some pitfalls in the assessment of mitochondrial function by analysis of phosphocreatine (PCr) recovery kinetics. Finally, we outline how complementary techniques (near-infrared spectroscopy, arterial spin labelling, BOLD and various other MRI and 1 H MRS measurements) can help in the physiological/metabolic interpretation of 31 P MRS studies by providing information about blood flow and oxygen delivery/utilisation. Our recommendations will assist in achieving the fullest possible reliable picture of muscle physiology and pathophysiology.

16.
Theranostics ; 10(5): 2436-2452, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32089747

RESUMO

Targeted photodynamic therapy (PDT) has the potential to selectively damage tumor tissue and to increase tumor vessel permeability. Here we characterize the tissue biodistribution of two EGFR-targeted nanobody-photosensitizer conjugates (NB-PS), the monovalent 7D12-PS and the biparatopic 7D12-9G8-PS. In addition, we report on the local and acute phototoxic effects triggered by illumination of these NB-PS which have previously shown to lead to extensive tumor damage. Methods: Intravital microscopy and the skin-fold chamber model, containing OSC-19-luc2-cGFP tumors, were used to investigate: a) the fluorescence kinetics and distribution, b) the vascular response and c) the induction of necrosis after illumination at 1 or 24 h post administration of 7D12-PS and 7D12-9G8-PS. In addition, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of a solid tumor model was used to investigate the microvascular status 2 h after 7D12-PS mediated PDT. Results: Image analysis showed significant tumor colocalization for both NB-PS which was higher for 7D12-9G8-PS. Intravital imaging showed clear tumor cell membrane localization 1 and 2 h after administration of 7D12-9G8-PS, and fluorescence in or close to endothelial cells in normal tissue for both NB-PS. PDT lead to vasoconstriction and leakage of tumor and normal tissue vessels in the skin-fold chamber model. DCE-MRI confirmed the reduction of tumor perfusion after 7D12-PS mediated PDT. PDT induced extensive tumor necrosis and moderate normal tissue damage, which was similar for both NB-PS conjugates. This was significantly reduced when illumination was performed at 24 h compared to 1 h after administration. Discussion: Although differences were observed in distribution of the two NB-PS conjugates, both led to similar necrosis. Clearly, the response to PDT using NB-PS conjugates is the result of a complex mixture of tumor cell responses and vascular effects, which is likely to be necessary for a maximally effective treatment.


Assuntos
Receptores ErbB/metabolismo , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Microscopia Intravital/métodos , Imageamento por Ressonância Magnética/métodos , Camundongos , Imagem Óptica/métodos , Fármacos Fotossensibilizantes/química , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Distribuição Tecidual/efeitos dos fármacos
17.
NMR Biomed ; 33(3): e4235, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31879985

RESUMO

Deuterium metabolic imaging (DMI) is a novel MR-based method to spatially map metabolism of deuterated substrates such as [6,6'-2 H2 ]-glucose in vivo. Compared with traditional 13 C-MR-based metabolic studies, the MR sensitivity of DMI is high due to the larger 2 H magnetic moment and favorable T1 and T2 relaxation times. Here, the magnetic field dependence of DMI sensitivity and transmit efficiency is studied on phantoms and rat brain postmortem at 4, 9.4 and 11.7 T. The sensitivity and spectral resolution on human brain in vivo are investigated at 4 and 7 T before and after an oral dose of [6,6'-2 H2 ]-glucose. For small animal surface coils (Ø 30 mm), the experimentally measured sensitivity and transmit efficiency scale with the magnetic field to a power of +1.75 and -0.30, respectively. These are in excellent agreement with theoretical predictions made from the principle of reciprocity for a coil noise-dominant regime. For larger human surface coils (Ø 80 mm), the sensitivity scales as a +1.65 power. The spectral resolution increases linearly due to near-constant linewidths. With optimal multireceiver arrays the acquisition of DMI at a nominal 1 mL spatial resolution is feasible at 7 T.


Assuntos
Deutério/metabolismo , Campos Magnéticos , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Humanos , Imagens de Fantasmas , Ratos , Razão Sinal-Ruído
18.
Sci Rep ; 9(1): 1089, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30705355

RESUMO

Chemical exchange saturation transfer (CEST) exploits the chemical exchange of labile protons of an endogenous or exogenous compound with water to image the former indirectly through the water signal. Z-spectra of the brain have traditionally been analyzed for two most common saturation phenomena: downfield amide proton transfer (APT) and upfield nuclear Overhauser enhancement (NOE). However, a great body of brain metabolites, many of interest in neurology and oncology, contributes to the downfield saturation in Z-spectra. The extraction of these "hidden" metabolites from Z-spectra requires careful design of CEST sequences and data processing models, which is only possible by first obtaining CEST signatures of the brain metabolites possessing labile protons. In this work, we measured exchange rates of all major-for-CEST brain metabolites in the physiological pH range at 37 °C. Analysis of their contributions to Z-spectra revealed that regardless of the main magnetic field strength and pH, five main contributors, i.e. myo-inositol, creatine, phosphocreatine, glutamate, and mobile (poly)peptides, account for ca. 90% of downfield CEST effect. The fundamental CEST parameters presented in this study can be exploited in the design of novel CEST sequences and Z-spectra processing models, which will enable simultaneous and quantitative CEST imaging of multiple metabolites: multicolor CEST.


Assuntos
Encéfalo/metabolismo , Metaboloma , Animais , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Compostos Organofosforados
20.
Cardiovasc Res ; 114(10): 1324-1334, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635338

RESUMO

Aims: Mitochondrial fatty acid oxidation (FAO) is an important energy provider for cardiac work and changes in cardiac substrate preference are associated with different heart diseases. Carnitine palmitoyltransferase 1B (CPT1B) is thought to perform the rate limiting enzyme step in FAO and is inhibited by malonyl-CoA. The role of CPT1B in cardiac metabolism has been addressed by inhibiting or decreasing CPT1B protein or after modulation of tissue malonyl-CoA metabolism. We assessed the role of CPT1B malonyl-CoA sensitivity in cardiac metabolism. Methods and results: We generated and characterized a knock in mouse model expressing the CPT1BE3A mutant enzyme, which has reduced sensitivity to malonyl-CoA. In isolated perfused hearts, FAO was 1.9-fold higher in Cpt1bE3A/E3A hearts compared with Cpt1bWT/WT hearts. Metabolomic, proteomic and transcriptomic analysis showed increased levels of malonylcarnitine, decreased concentration of CPT1B protein and a small but coordinated downregulation of the mRNA expression of genes involved in FAO in Cpt1bE3A/E3A hearts, all of which aim to limit FAO. In vivo assessment of cardiac function revealed only minor changes, cardiac hypertrophy was absent and histological analysis did not reveal fibrosis. Conclusions: Malonyl-CoA-dependent inhibition of CPT1B plays a crucial role in regulating FAO rate in the heart. Chronic elevation of FAO has a relatively subtle impact on cardiac function at least under baseline conditions.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Malonil Coenzima A/metabolismo , Mitocôndrias Cardíacas/enzimologia , Miocárdio/enzimologia , Animais , Carnitina O-Palmitoiltransferase/genética , Genótipo , Glucose/metabolismo , Glicólise , Preparação de Coração Isolado , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Oxirredução , Fenótipo , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...