Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Metab Eng ; 82: 201-215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364997

RESUMO

Chemically defined media for cultivation of Saccharomyces cerevisiae strains are commonly supplemented with a mixture of multiple Class-B vitamins, whose omission leads to strongly reduced growth rates. Fast growth without vitamin supplementation is interesting for industrial applications, as it reduces costs and complexity of medium preparation and may decrease susceptibility to contamination by auxotrophic microbes. In this study, suboptimal growth rates of S. cerevisiae CEN.PK113-7D in the absence of pantothenic acid, para-aminobenzoic acid (pABA), pyridoxine, inositol and/or biotin were corrected by single or combined overexpression of ScFMS1, ScABZ1/ScABZ2, ScSNZ1/ScSNO1, ScINO1 and Cyberlindnera fabianii BIO1, respectively. Several strategies were explored to improve growth of S. cerevisiae CEN.PK113-7D in thiamine-free medium. Overexpression of ScTHI4 and/or ScTHI5 enabled thiamine-independent growth at 83% of the maximum specific growth rate of the reference strain in vitamin-supplemented medium. Combined overexpression of seven native S. cerevisiae genes and CfBIO1 enabled a maximum specific growth rate of 0.33 ± 0.01 h-1 in vitamin-free synthetic medium. This growth rate was only 17 % lower than that of a congenic reference strain in vitamin-supplemented medium. Physiological parameters of the engineered vitamin-independent strain in aerobic glucose-limited chemostat cultures (dilution rate 0.10 h-1) grown on vitamin-free synthetic medium were similar to those of similar cultures of the parental strain grown on vitamin-supplemented medium. Transcriptome analysis revealed only few differences in gene expression between these cultures, which primarily involved genes with roles in Class-B vitamin metabolism. These results pave the way for development of fast-growing vitamin-independent industrial strains of S. cerevisiae.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Vitaminas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Biotina/metabolismo , Tiamina , Meios de Cultura
2.
FEMS Yeast Res ; 232023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37942589

RESUMO

In anaerobic Saccharomyces cerevisiae cultures, NADH (reduced form of nicotinamide adenine dinucleotide)-cofactor balancing by glycerol formation constrains ethanol yields. Introduction of an acetate-to-ethanol reduction pathway based on heterologous acetylating acetaldehyde dehydrogenase (A-ALD) can replace glycerol formation as 'redox-sink' and improve ethanol yields in acetate-containing media. Acetate concentrations in feedstock for first-generation bioethanol production are, however, insufficient to completely replace glycerol formation. An alternative glycerol-reduction strategy bypasses the oxidative reaction in glycolysis by introducing phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). For optimal performance in industrial settings, yeast strains should ideally first fully convert acetate and, subsequently, continue low-glycerol fermentation via the PRK-RuBisCO pathway. However, anaerobic batch cultures of a strain carrying both pathways showed inferior acetate reduction relative to a strain expressing only the A-ALD pathway. Complete A-ALD-mediated acetate reduction by a dual-pathway strain, grown anaerobically on 50 g L-1 glucose and 5 mmol L-1 acetate, was achieved upon reducing PRK abundance by a C-terminal extension of its amino acid sequence. Yields of glycerol and ethanol on glucose were 55% lower and 6% higher, respectively, than those of a nonengineered reference strain. The negative impact of the PRK-RuBisCO pathway on acetate reduction was attributed to sensitivity of the reversible A-ALD reaction to intracellular acetaldehyde concentrations.


Assuntos
Glicerol , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anaerobiose , Glicerol/metabolismo , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Acetatos/metabolismo , Fermentação , Etanol/metabolismo , Glucose/metabolismo
3.
Metab Eng ; 80: 151-162, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37751790

RESUMO

Glycerol is the major organic byproduct of industrial ethanol production with the yeast Saccharomyces cerevisiae. Improved ethanol yields have been achieved with engineered S. cerevisiae strains in which heterologous pathways replace glycerol formation as the predominant mechanism for anaerobic re-oxidation of surplus NADH generated in biosynthetic reactions. Functional expression of heterologous phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) genes enables yeast cells to couple a net oxidation of NADH to the conversion of glucose to ethanol. In another strategy, NADH-dependent reduction of exogenous acetate to ethanol is enabled by introduction of a heterologous acetylating acetaldehyde dehydrogenase (A-ALD). This study explores potential advantages of co-cultivating engineered PRK-RuBisCO-based and A-ALD-based strains in anaerobic bioreactor batch cultures. Co-cultivation of these strains, which in monocultures showed reduced glycerol yields and improved ethanol yields, strongly reduced the formation of acetaldehyde and acetate, two byproducts that were formed in anaerobic monocultures of a PRK-RuBisCO-based strain. In addition, co-cultures on medium with low acetate-to-glucose ratios that mimicked those in industrial feedstocks completely removed acetate from the medium. Kinetics of co-cultivation processes and glycerol production could be optimized by tuning the relative inoculum sizes of the two strains. Co-cultivation of a PRK-RuBisCO strain with a Δgpd1 Δgpd2 A-ALD strain, which was unable to grow in the absence of acetate and evolved for faster anaerobic growth in acetate-supplemented batch cultures, further reduced glycerol formation but led to extended fermentation times. These results demonstrate the potential of using defined consortia of engineered S. cerevisiae strains for high-yield, minimal-waste ethanol production.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Engenharia Metabólica/métodos , NAD/metabolismo , Etanol/metabolismo , Glicerol/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Acetatos/metabolismo , Fermentação , Glucose/metabolismo
4.
Biotechnol Biofuels Bioprod ; 16(1): 81, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173767

RESUMO

BACKGROUND: Anaerobic Saccharomyces cerevisiae cultures require glycerol formation to re-oxidize NADH formed in biosynthetic processes. Introduction of the Calvin-cycle enzymes phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) has been shown to couple re-oxidation of biosynthetic NADH to ethanol production and improve ethanol yield on sugar in fast-growing batch cultures. Since growth rates in industrial ethanol production processes are not constant, performance of engineered strains was studied in slow-growing cultures. RESULTS: In slow-growing anaerobic chemostat cultures (D = 0.05 h-1), an engineered PRK/RuBisCO strain produced 80-fold more acetaldehyde and 30-fold more acetate than a reference strain. This observation suggested an imbalance between in vivo activities of PRK/RuBisCO and formation of NADH in biosynthesis. Lowering the copy number of the RuBisCO-encoding cbbm expression cassette from 15 to 2 reduced acetaldehyde and acetate production by 67% and 29%, respectively. Additional C-terminal fusion of a 19-amino-acid tag to PRK reduced its protein level by 13-fold while acetaldehyde and acetate production decreased by 94% and 61%, respectively, relative to the 15 × cbbm strain. These modifications did not affect glycerol production at 0.05 h-1 but caused a 4.6 fold higher glycerol production per amount of biomass in fast-growing (0.29 h-1) anaerobic batch cultures than observed for the 15 × cbbm strain. In another strategy, the promoter of ANB1, whose transcript level positively correlated with growth rate, was used to control PRK synthesis in a 2 × cbbm strain. At 0.05 h-1, this strategy reduced acetaldehyde and acetate production by 79% and 40%, respectively, relative to the 15 × cbbm strain, without affecting glycerol production. The maximum growth rate of the resulting strain equalled that of the reference strain, while its glycerol production was 72% lower. CONCLUSIONS: Acetaldehyde and acetate formation by slow-growing cultures of engineered S. cerevisiae strains carrying a PRK/RuBisCO bypass of yeast glycolysis was attributed to an in vivo overcapacity of PRK and RuBisCO. Reducing the capacity of PRK and/or RuBisCO was shown to mitigate this undesirable byproduct formation. Use of a growth rate-dependent promoter for PRK expression highlighted the potential of modulating gene expression in engineered strains to respond to growth-rate dynamics in industrial batch processes.

5.
Antonie Van Leeuwenhoek ; 115(11): 1363-1378, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36241945

RESUMO

Analysis of predicted fungal proteomes revealed a large family of sequences that showed similarity to the Saccharomyces cerevisiae Class-I dihydroorotate dehydrogenase Ura1, which supports synthesis of pyrimidines under aerobic and anaerobic conditions. However, expression of codon-optimised representatives of this gene family, from the ascomycete Alternaria alternata and the basidiomycete Schizophyllum commune, only supported growth of an S. cerevisiae ura1Δ mutant when synthetic media were supplemented with dihydrouracil. A hypothesis that these genes encode NAD(P)+-dependent dihydrouracil dehydrogenases (EC 1.3.1.1 or 1.3.1.2) was rejected based on absence of complementation in anaerobic cultures. Uracil- and thymine-dependent oxygen consumption and hydrogen-peroxide production by cell extracts of S. cerevisiae strains expressing the A. alternata and S. commune genes showed that, instead, they encode active dihydrouracil oxidases (DHO, EC1.3.3.7). DHO catalyses the reaction dihydrouracil + O2 → uracil + H2O2 and was only reported in the yeast Rhodotorula glutinis (Owaki in J Ferment Technol 64:205-210, 1986). No structural gene for DHO was previously identified. DHO-expressing strains were highly sensitive to 5-fluorodihydrouracil (5F-dhu) and plasmids bearing expression cassettes for DHO were readily lost during growth on 5F-dhu-containing media. These results show the potential applicability of fungal DHO genes as counter-selectable marker genes for genetic modification of S. cerevisiae and other organisms that lack a native DHO. Further research should explore the physiological significance of this enigmatic and apparently widespread fungal enzyme.


Assuntos
Peróxido de Hidrogênio , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Timina , Proteoma/genética , Extratos Celulares , NAD/genética , Genes Fúngicos , Uracila , Hidrogênio
6.
Biotechnol Biofuels Bioprod ; 15(1): 112, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253796

RESUMO

BACKGROUND: Saccharomyces cerevisiae is intensively used for industrial ethanol production. Its native fermentation pathway enables a maximum product yield of 2 mol of ethanol per mole of glucose. Based on conservation laws, supply of additional electrons could support even higher ethanol yields. However, this option is disallowed by the configuration of the native yeast metabolic network. To explore metabolic engineering strategies for eliminating this constraint, we studied alcoholic fermentation of sorbitol. Sorbitol cannot be fermented anaerobically by S. cerevisiae because its oxidation to pyruvate via glycolysis yields one more NADH than conversion of glucose. To enable re-oxidation of this additional NADH by alcoholic fermentation, sorbitol metabolism was studied in S. cerevisiae strains that functionally express heterologous genes for ribulose-1,5-bisphosphate carboxylase (RuBisCO) and phosphoribulokinase (PRK). Together with the yeast non-oxidative pentose-phosphate pathway, these Calvin-cycle enzymes enable a bypass of the oxidative reaction in yeast glycolysis. RESULTS: Consistent with earlier reports, overproduction of the native sorbitol transporter Hxt15 and the NAD+-dependent sorbitol dehydrogenase Sor2 enabled aerobic, but not anaerobic growth of S. cerevisiae on sorbitol. In anaerobic, slow-growing chemostat cultures on glucose-sorbitol mixtures, functional expression of PRK-RuBisCO pathway genes enabled a 12-fold higher rate of sorbitol co-consumption than observed in a sorbitol-consuming reference strain. Consistent with the high Km for CO2 of the bacterial RuBisCO that was introduced in the engineered yeast strains, sorbitol consumption and increased ethanol formation depended on enrichment of the inlet gas with CO2. Prolonged chemostat cultivation on glucose-sorbitol mixtures led to loss of sorbitol co-fermentation. Whole-genome resequencing after prolonged cultivation suggested a trade-off between glucose-utilization and efficient fermentation of sorbitol via the PRK-RuBisCO pathway. CONCLUSIONS: Combination of the native sorbitol assimilation pathway of S. cerevisiae and an engineered PRK-RuBisCO pathway enabled RuBisCO-dependent, anaerobic co-fermentation of sorbitol and glucose. This study demonstrates the potential for increasing the flexibility of redox-cofactor metabolism in anaerobic S. cerevisiae cultures and, thereby, to extend substrate range and improve product yields in anaerobic yeast-based processes by enabling entry of additional electrons.

7.
Synth Syst Biotechnol ; 7(1): 554-566, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35128088

RESUMO

Product yield on carbohydrate feedstocks is a key performance indicator for industrial ethanol production with the yeast Saccharomyces cerevisiae. This paper reviews pathway engineering strategies for improving ethanol yield on glucose and/or sucrose in anaerobic cultures of this yeast by altering the ratio of ethanol production, yeast growth and glycerol formation. Particular attention is paid to strategies aimed at altering energy coupling of alcoholic fermentation and to strategies for altering redox-cofactor coupling in carbon and nitrogen metabolism that aim to reduce or eliminate the role of glycerol formation in anaerobic redox metabolism. In addition to providing an overview of scientific advances we discuss context dependency, theoretical impact and potential for industrial application of different proposed and developed strategies.

8.
FEMS Yeast Res ; 22(1)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35137036

RESUMO

While thermotolerance is an attractive trait for yeasts used in industrial ethanol production, oxygen requirements of known thermotolerant species are incompatible with process requirements. Analysis of oxygen-sufficient and oxygen-limited chemostat cultures of the facultatively fermentative, thermotolerant species Ogataea parapolymorpha showed its minimum oxygen requirements to be an order of magnitude larger than those reported for the thermotolerant yeast Kluyveromyces marxianus. High oxygen requirements of O. parapolymorpha coincided with a near absence of glycerol, a key NADH/NAD+ redox-cofactor-balancing product in many other yeasts, in oxygen-limited cultures. Genome analysis indicated absence of orthologs of the Saccharomyces cerevisiae glycerol-3-phosphate-phosphatase genes GPP1 and GPP2. Co-feeding of acetoin, whose conversion to 2,3-butanediol enables reoxidation of cytosolic NADH, supported a 2.5-fold increase of the biomass concentration in oxygen-limited cultures. An O. parapolymorpha strain in which key genes involved in mitochondrial reoxidation of NADH were inactivated did produce glycerol, but transcriptome analysis did not reveal a clear candidate for a responsible phosphatase. Expression of S. cerevisiae GPD2, which encodes NAD+-dependent glycerol-3-phosphate dehydrogenase, and GPP1 supported increased glycerol production by oxygen-limited chemostat cultures of O. parapolymorpha. These results identify dependence on respiration for NADH reoxidation as a key contributor to unexpectedly high oxygen requirements of O. parapolymorpha.


Assuntos
NAD , Saccharomyces cerevisiae , Glicerol/metabolismo , NAD/metabolismo , Oxigênio/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycetales
10.
Fungal Biol Biotechnol ; 8(1): 10, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34656184

RESUMO

BACKGROUND: In most fungi, quinone-dependent Class-II dihydroorotate dehydrogenases (DHODs) are essential for pyrimidine biosynthesis. Coupling of these Class-II DHODHs to mitochondrial respiration makes their in vivo activity dependent on oxygen availability. Saccharomyces cerevisiae and closely related yeast species harbor a cytosolic Class-I DHOD (Ura1) that uses fumarate as electron acceptor and thereby enables anaerobic pyrimidine synthesis. Here, we investigate DHODs from three fungi (the Neocallimastigomycete Anaeromyces robustus and the yeasts Schizosaccharomyces japonicus and Dekkera bruxellensis) that can grow anaerobically but, based on genome analysis, only harbor a Class-II DHOD. RESULTS: Heterologous expression of putative Class-II DHOD-encoding genes from fungi capable of anaerobic, pyrimidine-prototrophic growth (Arura9, SjURA9, DbURA9) in an S. cerevisiae ura1Δ strain supported aerobic as well as anaerobic pyrimidine prototrophy. A strain expressing DbURA9 showed delayed anaerobic growth without pyrimidine supplementation. Adapted faster growing DbURA9-expressing strains showed mutations in FUM1, which encodes fumarase. GFP-tagged SjUra9 and DbUra9 were localized to S. cerevisiae mitochondria, while ArUra9, whose sequence lacked a mitochondrial targeting sequence, was localized to the yeast cytosol. Experiments with cell extracts showed that ArUra9 used free FAD and FMN as electron acceptors. Expression of SjURA9 in S. cerevisiae reproducibly led to loss of respiratory competence and mitochondrial DNA. A cysteine residue (C265 in SjUra9) in the active sites of all three anaerobically active Ura9 orthologs was shown to be essential for anaerobic activity of SjUra9 but not of ArUra9. CONCLUSIONS: Activity of fungal Class-II DHODs was long thought to be dependent on an active respiratory chain, which in most fungi requires the presence of oxygen. By heterologous expression experiments in S. cerevisiae, this study shows that phylogenetically distant fungi independently evolved Class-II dihydroorotate dehydrogenases that enable anaerobic pyrimidine biosynthesis. Further structure-function studies are required to understand the mechanistic basis for the anaerobic activity of Class-II DHODs and an observed loss of respiratory competence in S. cerevisiae strains expressing an anaerobically active DHOD from Sch. japonicus.

11.
Metab Eng Commun ; 13: e00183, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34584841

RESUMO

Engineered strains of the yeast Saccharomyces cerevisiae are intensively studied as production platforms for aromatic compounds such as hydroxycinnamic acids, stilbenoids and flavonoids. Heterologous pathways for production of these compounds use l-phenylalanine and/or l-tyrosine, generated by the yeast shikimate pathway, as aromatic precursors. The Ehrlich pathway converts these precursors to aromatic fusel alcohols and acids, which are undesirable by-products of yeast strains engineered for production of high-value aromatic compounds. Activity of the Ehrlich pathway requires any of four S. cerevisiae 2-oxo-acid decarboxylases (2-OADCs): Aro10 or the pyruvate-decarboxylase isoenzymes Pdc1, Pdc5, and Pdc6. Elimination of pyruvate-decarboxylase activity from S. cerevisiae is not straightforward as it plays a key role in cytosolic acetyl-CoA biosynthesis during growth on glucose. In a search for pyruvate decarboxylases that do not decarboxylate aromatic 2-oxo acids, eleven yeast and bacterial 2-OADC-encoding genes were investigated. Homologs from Kluyveromyces lactis (KlPDC1), Kluyveromyces marxianus (KmPDC1), Yarrowia lipolytica (YlPDC1), Zymomonas mobilis (Zmpdc1) and Gluconacetobacter diazotrophicus (Gdpdc1.2 and Gdpdc1.3) complemented a Pdc- strain of S. cerevisiae for growth on glucose. Enzyme-activity assays in cell extracts showed that these genes encoded active pyruvate decarboxylases with different substrate specificities. In these in vitro assays, ZmPdc1, GdPdc1.2 or GdPdc1.3 had no substrate specificity towards phenylpyruvate. Replacing Aro10 and Pdc1,5,6 by these bacterial decarboxylases completely eliminated aromatic fusel-alcohol production in glucose-grown batch cultures of an engineered coumaric acid-producing S. cerevisiae strain. These results outline a strategy to prevent formation of an important class of by-products in 'chassis' yeast strains for production of non-native aromatic compounds.

12.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34353908

RESUMO

Biosynthesis of sterols, which are key constituents of canonical eukaryotic membranes, requires molecular oxygen. Anaerobic protists and deep-branching anaerobic fungi are the only eukaryotes in which a mechanism for sterol-independent growth has been elucidated. In these organisms, tetrahymanol, formed through oxygen-independent cyclization of squalene by a squalene-tetrahymanol cyclase, acts as a sterol surrogate. This study confirms an early report [C. J. E. A. Bulder, Antonie Van Leeuwenhoek, 37, 353-358 (1971)] that Schizosaccharomyces japonicus is exceptional among yeasts in growing anaerobically on synthetic media lacking sterols and unsaturated fatty acids. Mass spectrometry of lipid fractions of anaerobically grown Sch. japonicus showed the presence of hopanoids, a class of cyclic triterpenoids not previously detected in yeasts, including hop-22(29)-ene, hop-17(21)-ene, hop-21(22)-ene, and hopan-22-ol. A putative gene in Sch. japonicus showed high similarity to bacterial squalene-hopene cyclase (SHC) genes and in particular to those of Acetobacter species. No orthologs of the putative Sch. japonicus SHC were found in other yeast species. Expression of the Sch. japonicus SHC gene (Sjshc1) in Saccharomyces cerevisiae enabled hopanoid synthesis and stimulated anaerobic growth in sterol-free media, thus indicating that one or more of the hopanoids produced by SjShc1 could at least partially replace sterols. Use of hopanoids as sterol surrogates represents a previously unknown adaptation of eukaryotic cells to anaerobic growth. The fast anaerobic growth of Sch. japonicus in sterol-free media is an interesting trait for developing robust fungal cell factories for application in anaerobic industrial processes.


Assuntos
Proteínas Fúngicas/metabolismo , Transferases Intramoleculares/metabolismo , Schizosaccharomyces/fisiologia , Triterpenos/metabolismo , Adaptação Biológica , Anaerobiose , Proteínas de Bactérias/química , Meios de Cultura/química , Meios de Cultura/farmacologia , Ergosterol/farmacologia , Células Eucarióticas/fisiologia , Ácidos Graxos Insaturados/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Transferases Intramoleculares/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/crescimento & desenvolvimento , Esteróis/metabolismo
13.
Metab Eng ; 67: 347-364, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34303845

RESUMO

Current large-scale, anaerobic industrial processes for ethanol production from renewable carbohydrates predominantly rely on the mesophilic yeast Saccharomyces cerevisiae. Use of thermotolerant, facultatively fermentative yeasts such as Kluyveromyces marxianus could confer significant economic benefits. However, in contrast to S. cerevisiae, these yeasts cannot grow in the absence of oxygen. Responses of K. marxianus and S. cerevisiae to different oxygen-limitation regimes were analyzed in chemostats. Genome and transcriptome analysis, physiological responses to sterol supplementation and sterol-uptake measurements identified absence of a functional sterol-uptake mechanism as a key factor underlying the oxygen requirement of K. marxianus. Heterologous expression of a squalene-tetrahymanol cyclase enabled oxygen-independent synthesis of the sterol surrogate tetrahymanol in K. marxianus. After a brief adaptation under oxygen-limited conditions, tetrahymanol-expressing K. marxianus strains grew anaerobically on glucose at temperatures of up to 45 °C. These results open up new directions in the development of thermotolerant yeast strains for anaerobic industrial applications.


Assuntos
Kluyveromyces , Saccharomyces cerevisiae , Anaerobiose , Fermentação , Kluyveromyces/genética , Saccharomyces cerevisiae/genética
14.
mBio ; 12(3): e0096721, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154398

RESUMO

Neocallimastigomycetes are unique examples of strictly anaerobic eukaryotes. This study investigates how these anaerobic fungi bypass reactions involved in synthesis of pyridine nucleotide cofactors and coenzyme A that, in canonical fungal pathways, require molecular oxygen. Analysis of Neocallimastigomycetes proteomes identified a candidate l-aspartate-decarboxylase (AdcA) and l-aspartate oxidase (NadB) and quinolinate synthase (NadA), constituting putative oxygen-independent bypasses for coenzyme A synthesis and pyridine nucleotide cofactor synthesis. The corresponding gene sequences indicated acquisition by ancient horizontal gene transfer (HGT) events involving bacterial donors. To test whether these enzymes suffice to bypass corresponding oxygen-requiring reactions, they were introduced into fms1Δ and bna2Δ Saccharomyces cerevisiae strains. Expression of nadA and nadB from Piromyces finnis and adcA from Neocallimastix californiae conferred cofactor prototrophy under aerobic and anaerobic conditions. This study simulates how HGT can drive eukaryotic adaptation to anaerobiosis and provides a basis for elimination of auxotrophic requirements in anaerobic industrial applications of yeasts and fungi. IMPORTANCE NAD (NAD+) and coenzyme A (CoA) are central metabolic cofactors whose canonical biosynthesis pathways in fungi require oxygen. Anaerobic gut fungi of the Neocallimastigomycota phylum are unique eukaryotic organisms that adapted to anoxic environments. Analysis of Neocallimastigomycota genomes revealed that these fungi might have developed oxygen-independent biosynthetic pathways for NAD+ and CoA biosynthesis, likely acquired through horizontal gene transfer (HGT) from prokaryotic donors. We confirmed functionality of these putative pathways under anaerobic conditions by heterologous expression in the yeast Saccharomyces cerevisiae. This approach, combined with sequence comparison, offers experimental insight on whether HGT events were required and/or sufficient for acquiring new traits. Moreover, our results demonstrate an engineering strategy for enabling S. cerevisiae to grow anaerobically in the absence of the precursor molecules pantothenate and nicotinate, thereby contributing to alleviate oxygen requirements and to move closer to prototrophic anaerobic growth of this industrially relevant yeast.


Assuntos
Coenzima A/biossíntese , Fungos/metabolismo , Redes e Vias Metabólicas , Nucleotídeos/metabolismo , Oxigênio/metabolismo , Piridinas/metabolismo , Saccharomyces cerevisiae/genética , Anaerobiose , Fungos/genética , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Neocallimastix/genética , Piromyces/genética , Proteoma , Saccharomyces cerevisiae/metabolismo
15.
FEMS Yeast Res ; 21(5)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34100921

RESUMO

All known facultatively fermentative yeasts require molecular oxygen for growth. Only in a small number of yeast species, these requirements can be circumvented by supplementation of known anaerobic growth factors such as nicotinate, sterols and unsaturated fatty acids. Biosynthetic oxygen requirements of yeasts are typically small and, unless extensive precautions are taken to minimize inadvertent entry of trace amounts of oxygen, easily go unnoticed in small-scale laboratory cultivation systems. This paper discusses critical points in the design of anaerobic yeast cultivation experiments in anaerobic chambers and laboratory bioreactors. Serial transfer or continuous cultivation to dilute growth factors present in anaerobically pre-grown inocula, systematic inclusion of control strains and minimizing the impact of oxygen diffusion through tubing are identified as key elements in experimental design. Basic protocols are presented for anaerobic-chamber and bioreactor experiments.


Assuntos
Reatores Biológicos , Leveduras , Anaerobiose , Fermentação , Oxigênio
16.
Metab Eng ; 67: 88-103, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34052444

RESUMO

An oxygen requirement for de novo biotin synthesis in Saccharomyces cerevisiae precludes the application of biotin-prototrophic strains in anoxic processes that use biotin-free media. To overcome this issue, this study explores introduction of the oxygen-independent Escherichia coli biotin-biosynthesis pathway in S. cerevisiae. Implementation of this pathway required expression of seven E. coli genes involved in fatty-acid synthesis and three E. coli genes essential for the formation of a pimelate thioester, key precursor of biotin synthesis. A yeast strain expressing these genes readily grew in biotin-free medium, irrespective of the presence of oxygen. However, the engineered strain exhibited specific growth rates 25% lower in biotin-free media than in biotin-supplemented media. Following adaptive laboratory evolution in anoxic cultures, evolved cell lines that no longer showed this growth difference in controlled bioreactors, were characterized by genome sequencing and proteome analyses. The evolved isolates exhibited a whole-genome duplication accompanied with an alteration in the relative gene dosages of biosynthetic pathway genes. These alterations resulted in a reduced abundance of the enzymes catalyzing the first three steps of the E. coli biotin pathway. The evolved pathway configuration was reverse engineered in the diploid industrial S. cerevisiae strain Ethanol Red. The resulting strain grew at nearly the same rate in biotin-supplemented and biotin-free media non-controlled batches performed in an anaerobic chamber. This study established an unique genetic engineering strategy to enable biotin-independent anoxic growth of S. cerevisiae and demonstrated its portability in industrial strain backgrounds.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Biotina , Escherichia coli , Oxigênio , Saccharomyces cerevisiae/genética
17.
Metab Eng ; 65: 11-29, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33617956

RESUMO

Metabolic capabilities of cells are not only defined by their repertoire of enzymes and metabolites, but also by availability of enzyme cofactors. The molybdenum cofactor (Moco) is widespread among eukaryotes but absent from the industrial yeast Saccharomyces cerevisiae. No less than 50 Moco-dependent enzymes covering over 30 catalytic activities have been described to date, introduction of a functional Moco synthesis pathway offers interesting options to further broaden the biocatalytic repertoire of S. cerevisiae. In this study, we identified seven Moco biosynthesis genes in the non-conventional yeast Ogataea parapolymorpha by SpyCas9-mediated mutational analysis and expressed them in S. cerevisiae. Functionality of the heterologously expressed Moco biosynthesis pathway in S. cerevisiae was assessed by co-expressing O. parapolymorpha nitrate-assimilation enzymes, including the Moco-dependent nitrate reductase. Following two-weeks of incubation, growth of the engineered S. cerevisiae strain was observed on nitrate as sole nitrogen source. Relative to the rationally engineered strain, the evolved derivatives showed increased copy numbers of the heterologous genes, increased levels of the encoded proteins and a 5-fold higher nitrate-reductase activity in cell extracts. Growth at nM molybdate concentrations was enabled by co-expression of a Chlamydomonas reinhardtii high-affinity molybdate transporter. In serial batch cultures on nitrate-containing medium, a non-engineered S. cerevisiae strain was rapidly outcompeted by the spoilage yeast Brettanomyces bruxellensis. In contrast, an engineered and evolved nitrate-assimilating S. cerevisiae strain persisted during 35 generations of co-cultivation. This result indicates that the ability of engineered strains to use nitrate may be applicable to improve competitiveness of baker's yeast in industrial processes upon contamination with spoilage yeasts.


Assuntos
Nitratos , Saccharomyces cerevisiae , Brettanomyces , Molibdênio , Saccharomyces cerevisiae/genética , Saccharomycetales
18.
Biotechnol Bioeng ; 118(4): 1576-1586, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33410171

RESUMO

This study explores the relation between biomass-specific succinic acid (SA) production rate and specific growth rate of an engineered industrial strain of Saccharomyces cerevisiae, with the aim to investigate the extent to which growth and product formation can be uncoupled. Ammonium-limited aerobic chemostat and retentostat cultures were grown at different specific growth rates under industrially relevant conditions, that is, at a culture pH of 3 and with sparging of a 1:1 CO2 -air mixture. Biomass-specific SA production rates decreased asymptotically with decreasing growth rate. At near-zero growth rates, the engineered strain maintained a stable biomass-specific SA production rate for over 500 h, with a SA yield on glucose of 0.61 mol mol-1 . These results demonstrate that uncoupling of growth and SA production could indeed be achieved. A linear relation between the biomass-specific SA production rate and glucose consumption rate indicated the coupling of SA production rate and the flux through primary metabolism. The low culture pH resulted in an increased death rate, which was lowest at near-zero growth rates. Nevertheless, a significant amount of non-viable biomass accumulated in the retentostat cultures, thus underlining the importance of improving low-pH tolerance in further strain development for industrial SA production with S. cerevisiae.


Assuntos
Biomassa , Reatores Biológicos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Ácido Succínico/metabolismo , Glucose/metabolismo
19.
Front Genet ; 11: 518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582279

RESUMO

The lager-brewing yeast Saccharomyces pastorianus is a hybrid between S. cerevisiae and S. eubayanus with an exceptional degree of aneuploidy. While chromosome copy number variation (CCNV) is present in many industrial Saccharomyces strains and has been linked to various industrially-relevant traits, its impact on the brewing performance of S. pastorianus remains elusive. Here we attempt to delete single copies of chromosomes which are relevant for the production of off-flavor compound diacetyl by centromere silencing. However, the engineered strains display CNV of multiple non-targeted chromosomes. We attribute this unintended CCNV to inherent instability and to a mutagenic effect of electroporation and of centromere-silencing. Regardless, the resulting strains displayed large phenotypic diversity. By growing centromere-silenced cells in repeated sequential batches in medium containing 10% ethanol, mutants with increased ethanol tolerance were obtained. By using CCNV mutagenesis by exposure to the mitotic inhibitor MBC, selection in the same set-up yielded even more tolerant mutants that would not classify as genetically modified organisms. These results show that CCNV of alloaneuploid S. pastorianus genomes is highly unstable, and that CCNV mutagenesis can generate broad diversity. Coupled to effective selection or screening, CCNV mutagenesis presents a potent tool for strain improvement.

20.
Appl Environ Microbiol ; 86(17)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32561581

RESUMO

Biosynthesis of sterols, which are considered essential components of virtually all eukaryotic membranes, requires molecular oxygen. Anaerobic growth of the yeast Saccharomyces cerevisiae therefore strictly depends on sterol supplementation of synthetic growth media. Neocallimastigomycota are a group of strictly anaerobic fungi which, instead of containing sterols, contain the pentacyclic triterpenoid "sterol surrogate" tetrahymanol, which is formed by cyclization of squalene. Here, we demonstrate that expression of the squalene-tetrahymanol cyclase gene TtTHC1 from the ciliate Tetrahymena thermophila enables synthesis of tetrahymanol by S. cerevisiae Moreover, expression of TtTHC1 enabled exponential growth of anaerobic S. cerevisiae cultures in sterol-free synthetic media. After deletion of the ERG1 gene from a TtTHC1-expressing S. cerevisiae strain, native sterol synthesis was abolished and sustained sterol-free growth was demonstrated under anaerobic as well as aerobic conditions. Anaerobic cultures of TtTHC1-expressing S. cerevisiae on sterol-free medium showed lower specific growth rates and biomass yields than ergosterol-supplemented cultures, while their ethanol yield was higher. This study demonstrated that acquisition of a functional squalene-tetrahymanol cyclase gene offers an immediate growth advantage to S. cerevisiae under anaerobic, sterol-limited conditions and provides the basis for a metabolic engineering strategy to eliminate the oxygen requirements associated with sterol synthesis in yeasts.IMPORTANCE The laboratory experiments described in this report simulate a proposed horizontal gene transfer event during the evolution of strictly anaerobic fungi. The demonstration that expression of a single heterologous gene sufficed to eliminate anaerobic sterol requirements in the model eukaryote Saccharomyces cerevisiae therefore contributes to our understanding of how sterol-independent eukaryotes evolved in anoxic environments. This report provides a proof of principle for a metabolic engineering strategy to eliminate sterol requirements in yeast strains that are applied in large-scale anaerobic industrial processes. The sterol-independent yeast strains described in this report provide a valuable platform for further studies on the physiological roles and impacts of sterols and sterol surrogates in eukaryotic cells.


Assuntos
Expressão Gênica , Liases/genética , Proteínas de Protozoários/genética , Saccharomyces cerevisiae/genética , Tetrahymena thermophila/genética , Evolução Biológica , Transferência Genética Horizontal , Liases/metabolismo , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Proteínas de Protozoários/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Esteróis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...