Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542237

RESUMO

Currently, scientists are increasingly focusing on utilizing the natural flora of the planet to search for and isolate individual bioactive substances that prevent various diseases, contribute to increased life expectancy, and affect all major life-supporting systems in the human body. This study describes the examination of the composition of plant raw materials from the Siberian Federal District. The research focuses on plant specimens from the root parts of Taraxacum officinale and Arctium lappa, collected in the Kemerovo region. The study determines the contents of the water-soluble vitamins B and C in the research subjects. The investigation includes assessing antioxidant properties, antimicrobial activity, and flavonoid content in extracts based on plant raw materials. All samples show a high percentage of antioxidant activity, with the highest antioxidant activity for T. officinale at 85.51 and that for A. lappa at 88.97. The results indicate low antimicrobial activity against Escherichia coli (growth inhibition zone up to 15.5 mm). Plant extracts contain significant amounts of B-group vitamins, with pyridoxine in T. officinale (156.40 µg/mL) and thiamine (46.20 µg/mL) and pyridoxine (357.10 µg/mL) in Arctium lappa. Flavonoids (rutin and quercetin) are identified in T. officinale and A. lappa extracts based on the study results.


Assuntos
Anti-Infecciosos , Arctium , Taraxacum , Humanos , Antioxidantes/farmacologia , Piridoxina , Extratos Vegetais/farmacologia , Vitaminas , Anti-Infecciosos/farmacologia
2.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569279

RESUMO

The antimicrobial properties of baicalin against H. pylori and several probiotic cultures were evaluated. Baicalin was isolated from a dry plant extract obtained by extraction with water at 70 °C. For isolation, extraction was carried out with n-butanol and purification on a chromatographic column. The antimicrobial potential was assessed by evaluating changes in the optical density of the bacterial suspension during cultivation; additionally, the disk diffusion method was used. During the study, the baicalin concentrations (0.25, 0.5, and 1 mg/mL) and the pH of the medium in the range of 1.5-8.0 were tested. The test objects were: suspensions of H. pylori, Lactobacillus casei, L. brevis, Bifidobacterium longum, and B. teenis. It was found that the greater the concentration of the substance in the solution, the greater the delay in the growth of the strain zone. Thus, the highest antimicrobial activity against H. pylori was observed at pH 1.5-2.0 and a baicalin concentration of 1.00 mg/mL. In relation to probiotic strains, a stimulating effect of baicalin (1.00 mg/mL) on the growth of L. casei biomass at pH 1.5-2.0 was observed. The results open up the prospects for the use of baicalin and probiotics for the treatment of diseases caused by H. pylori.


Assuntos
Helicobacter pylori , Probióticos , Scutellaria baicalensis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Probióticos/farmacologia , Trato Gastrointestinal
3.
Metabolites ; 13(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37110171

RESUMO

The prevalence of diabetes mellitus is one of the major medical problems that the modern world is currently facing. Type 1 and Type 2 diabetes mellitus both result in early disability and death, as well as serious social and financial problems. In some cases, synthetic drugs can be quite effective in the treatment of diabetes, though they have side effects. Plant-derived pharmacological substances are of particular interest. This review aims to study the antidiabetic properties of secondary plant metabolites. Existing review and research articles on the investigation of the antidiabetic properties of secondary plant metabolites, the methods of their isolation, and their use in diabetes mellitus, as well as separate articles that confirm the relevance of the topic and expand the understanding of the properties and mechanisms of action of plant metabolites, were analyzed for this review. The structure and properties of plants used for the treatment of diabetes mellitus, including plant antioxidants, polysaccharides, alkaloids, and insulin-like plant substances, as well as their antidiabetic properties and mechanisms for lowering blood sugar, are presented. The main advantages and disadvantages of using phytocomponents to treat diabetes are outlined. The types of complications of diabetes mellitus and the effects of medicinal plants and their phytocomponents on them are described. The effects of phytopreparations used to treat diabetes mellitus on the human gut microbiota are discussed. Plants with a general tonic effect, plants containing insulin-like substances, plants-purifiers, and plants rich in vitamins, organic acids, etc. have been shown to play an important role in the treatment of type 2 diabetes mellitus and the prevention of its complications.

4.
Microorganisms ; 11(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37110287

RESUMO

Heavy-metal contaminants are one of the most relevant problems of contemporary agriculture. High toxicity and the ability to accumulate in soils and crops pose a serious threat to food security. To solve this problem, it is necessary to accelerate the pace of restoration of disturbed agricultural lands. Bioremediation is an effective treatment for agricultural soil pollution. It relies on the ability of microorganisms to remove pollutants. The purpose of this study is to create a consortium based on microorganisms isolated from technogenic sites for further development in the field of soil restoration in agriculture. In the study, promising strains that can remove heavy metals from experimental media were selected: Pantoea sp., Achromobacter denitrificans, Klebsiella oxytoca, Rhizobium radiobacter, and Pseudomonas fluorescens. On their basis, consortiums were compiled, which were investigated for the ability to remove heavy metals from nutrient media, as well as to produce phytohormones. The most effective was Consortium D, which included Achromobacter denitrificans, Klebsiella oxytoca, and Rhizobium radiobacter in a ratio of 1:1:2, respectively. The ability of this consortium to produce indole-3-acetic acid and indole-3-butyric acid was 18.03 µg/L and 2.02 µg/L, respectively; the absorption capacity for heavy metals from the experimental media was Cd (56.39 mg/L), Hg (58.03 mg/L), As (61.17 mg/L), Pb (91.13 mg/L), and Ni (98.22 mg/L). Consortium D has also been found to be effective in conditions of mixed heavy-metal contamination. Due to the fact that the further use of the consortium will be focused on the soil of agricultural land cleanup, its ability to intensify the process of phytoremediation has been studied. The combined use of Trifolium pratense L. and the developed consortium ensured the removal of about 32% Pb, 15% As, 13% Hg, 31% Ni, and 25% Cd from the soil. Further research will be aimed at developing a biological product to improve the efficiency of remediation of lands withdrawn from agricultural use.

5.
Molecules ; 28(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36838548

RESUMO

The work reveals the results of studying the content of biologically active substances in samples of extracts of Ginkgo biloba callus cultures. Callus cultures grown in vitro on liquid nutrient media were the objects of the study. Considering various factors affecting the yield of the target components during extraction, the volume fraction of the organic modifier in the extracting mixture, the temperature factor, and the exposure time were identified as the main ones. The maximum yield of extractive substances (target biologically active substances with a degree of extraction of at least 50%) from the samples of callus culture extracts was detected at a ratio of extragent of 70% ethanol, a temperature of 50 °C, and exposure time of 6 h. Flavonoids, such as luteolin, quercetin, isoramentin, kaempferol, and amentoflavone, were isolated in the extract samples. As a result of column chromatography, fractions of individual biologically active substances (bilobalide, ginkgolide A, B, and C) were determined. The proposed schemes are focused on preserving the nativity while ensuring maximum purification from associated (ballast) components. Sorbents (Sephadex LH-20, poly-amide, silica gel) were used in successive stages of chromatography with rechromatography. The degree of purity of individually isolated substances was at least 95%.


Assuntos
Ginkgo biloba , Extratos Vegetais , Ginkgo biloba/química , Extratos Vegetais/química , Flavonoides/química , Quercetina/análise , Etanol
6.
Pharmaceutics ; 15(2)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36839938

RESUMO

Tanacetum vulgare is an herbaceous plant widely used in folk medicine. It is rich in phenolic acids and flavonoids, which have pharmacological and medicinal properties, such as anthelmintic, antispasmodic, tonic, antidiabetic, diuretic, and antihypertensive. This study aimed to confirm the presence of biologically active substances in Tanacetum vulgare and to determine the pharmacological spectrum of biological activity of Tanacetum vulgare extract components. When preparing Tanacetum vulgare extracts, the highest yield was observed when using the maceration method with a mixture of solvents methanol + trifluoroacetic acid (22.65 ± 0.68%). The biologically active substances in Tanacetum vulgare extract samples were determined using high-performance liquid chromatography. Biologically active substances such as luteolin-7-glucoside (550.80 mg/kg), chlorogenic acid (5945.40 mg/kg), and rosmarinic acid (661.31 mg/kg) were identified. Their structures were determined. The experiments have confirmed the antioxidant and antibacterial activities. Secondary metabolites of Tanacetum vulgare extracts have been found to have previously unknown biological activity types; experimental confirmation of their existence will advance phytochemical research and lead to the development of new drugs.

7.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499480

RESUMO

Phenolic acids are biologically active substances that prevent aging and age-related diseases, e.g., cancer, cardiovascular diseases, Alzheimer's disease, Parkinson's disease, etc. Cellular senescence is related to oxidative stress. The Siberian Federal District is rich in medicinal plants whose extracts contain phenolic acids. These plants can serve as raw materials for antiaging, antioxidant food supplements, and Amelanchier ovalis is one of them. In the present research, we tested the phytochemical profile of its extract for phenolic acids. Its geroprotective and antioxidant properties were studied both ex vivo and in vitro using Saccharomyces cerevisiae Y-564 as a model organism. The chromotographic analysis revealed gallic, p-hydroxybenzoic, and protocatechuic acids, as well as derivatives of chlorogenic and gallic acids. The research involved 0.25, 0.5, and 1.0 mg/mL extracts of Amelanchier ovalis, all of which increased the growth and lifespan of yeast cells. In addition, the extracts increased the survival rate of yeast under oxidative stress. An in vitro experiment also demonstrated the antioxidant potential of Amelanchier ovalis against ABTS radicals. Therefore, the Amelanchier ovalis berry extract proved to be an excellent source of phenolic acids and may be recommended as a raw material for use in antioxidant and geroprotective food supplements.


Assuntos
Antioxidantes , Rosaceae , Antioxidantes/química , Extratos Vegetais/química , Saccharomyces cerevisiae , Compostos Fitoquímicos/análise
8.
Life (Basel) ; 12(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362927

RESUMO

Glycyrrhiza glabra or licorice has long been known as a commonly used Ayurvedic herb. This study aims to investigate the effect of extraction methods on the chemical composition and biologically active properties of Glycyrrhiza glabra extract samples. The highest yield of the Glycyrrhiza glabra extract (21.31 ± 0.64 wt.%) was produced using the Soxhlet extraction method with methanol. The highest concentrations of biologically active substances (3,4-dihydroxybenzoic acid, n-coumaric acid, luteolin-7-glucoside, acacetin, apigenin-7-O-glucoside, chicoric acid, and hesperetin) were found in these samples of Glycyrrhiza glabra extracts. When applying the maceration method using a mixture of solvents methanol-NaOH, rosmarinic acid was identified, and catechin was found in large quantities with a mixture of methanol-trifluoroacetic acid (TFA). Growth inhibition zones were determined for Escherichia coli (13.6 ± 0.41 mm), Pseudomonas aeruginosa (10.8 ± 0.32 mm), Bacillus subtilis (16.1 ± 0.48 mm), and Candida albicans (13.2 ± 0.39 mm) when exposed to samples of Glycyrrhiza glabra extracts obtained by the Soxhlet method with methanol. The antioxidant activity of Glycyrrhiza glabra extract samples obtained by the Soxhlet method was 117.62 ± 7.91 µmol Trolox equivalent/g, using the ABTS method (highest value), and 23.91 ± 1.12 µmol Trolox equivalent/g according to the FRAP method (smallest). The antioxidant activity of the extract samples according to the DPPH method was an intermediate value of 58.16 ± 3.90 µmol Trolox equivalent/g. Antibacterial and antioxidant activities are manifested by the polyphenolic compounds and flavonoids contained in the samples of the methanol extract of Glycyrrhiza glabra produced using the Soxhlet method. These Glycyrrhiza glabra extract samples have the potential to become a natural alternative to existing therapies for the elimination of bacterial infections or the prevention of premature aging caused by free radicals and oxidative stress in the human body.

9.
Life (Basel) ; 12(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36295049

RESUMO

Vischeria punctata is a unicellular microalga that has industrial potential, as it can produce substances with beneficial properties. Among them, endopolysaccharides (accumulated in cells) and exopolysaccharides (released by cells into the culture medium) are of particular interest. This study aimed to investigate the effect of nutrient medium composition on the growth of V. punctata biomass and the synthesis of polysaccharides by microalgae. The effect of modifying a standard nutrient medium and varying cultivation parameters (temperature, time, and extractant type) on the yield of exopolysaccharides produced by the microalgae V. punctate was investigated. The methods of spectrophotometry, ultrasonic extraction, and alcohol precipitation were used in the study. It was found that after 61 days of cultivation, the concentration of polysaccharides in the culture medium was statistically significantly higher (p <0.05) when using a Prat nutrient medium (984.9 mg/g d.w.) than BBM 3N (63.0 mg/g d.w.). It was found that the increase in the V. punctata biomass when cultivated on different nutrient media did not differ significantly. The maximum biomass values on Prat and BBM 3N media were 1.101 mg/g d.w. and 1.120 mg/g d.w., respectively. Neutral sugars and uronic acids were found in the culture media. It follows on from the obtained data that the modified PratM medium was more efficient for extracting polysaccharides from V. punctata. The potential of microalgae as new sources of valuable chemicals (polysaccharides), which can be widely used in technologies for developing novel functional foods, biologically active food supplements, and pharmaceutical substances, was studied.

10.
Life (Basel) ; 12(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36143431

RESUMO

Biologically active substances from microalgae can exhibit antioxidant, immunostimulating, antibacterial, antiviral, antitumor, antihypertensive, regenerative, and neuroprotective effects. Lipid complexes of microalgae Chlorella vulgaris and Arthrospira platensis exhibit antibacterial activity and inhibit the growth of the Gram-positive strain Bacillus subtilis; the maximum zone of inhibition is 0.7 ± 0.03 cm at all concentrations. The carbohydrate-containing complex of C. vulgaris exhibits antibacterial activity, inhibits the growth of the Gram-positive strain B. subtilis, Bacillus pumilus; the maximum zone of inhibition is 3.5 ± 0.17 cm at all concentrations considered. The carbohydrate complex of A. platensis has antimicrobial activity against the Gram-negative strain of Escherichia coli at all concentrations, and the zone of inhibition is 2.0-3.0 cm. The presence of mythelenic, carbonyl groups, ester bonds between fatty acids and glycerol in lipid molecules, the stretching vibration of the phosphate group PO2, neutral lipids, glyco- and phospholipids, and unsaturated fatty acids, such as γ-linolenic, was revealed using FTIR spectra. Spectral peaks characteristic of saccharides were found, and there were cellulose and starch absorption bands, pyranose rings, and phenolic compounds. Both algae in this study had phenolic and alcohol components, which had high antibacterial activity. Microalgae can be used as biologically active food additives and/or as an alternative to antibiotic feed in animal husbandry due to their antibacterial properties.

11.
Molecules ; 27(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36144605

RESUMO

The Baltic Sea algae species composition includes marine euryhaline, freshwater euryhaline, and true brackish water forms. This study aimed to isolate a lipid-pigment complex from microalgae of the Baltic Sea (Kaliningrad region) and investigate its antimicrobial activity against Gram-positive and Gram-negative bacteria. Microalgae were sampled using a box-shaped bottom sampler. Sequencing was used for identification. Spectroscopy and chromatography with mass spectroscopy were used to study the properties of microalgae. Antibiotic activity was determined by the disc diffusion test. Lipids were extracted using the Folch method. Analysis of the results demonstrated the presence of antimicrobial activity of the lipid-pigment complex of microalgae against E. coli (the zone diameter was 17.0 ± 0.47 mm and 17.0 ± 0.21 mm in Chlorella vulgaris and Arthrospira platensis, respectively) and Bacillus pumilus (maximum inhibition diameter 16.0 ± 0.27 mm in C. vulgaris and 16.0 ± 0.22 mm in A. platensis). The cytotoxic and antioxidant activities of the lipid complexes of microalgae C. vulgaris and A. platensis were established and their physicochemical properties and fatty acid composition were studied. The results demonstrated that the lipid-pigment complex under experimental conditions was the most effective against P. pentosaceus among Gram-positive bacteria. Antimicrobial activity is directly related to the concentration of the lipid-pigment complex. The presence of antibacterial activity in microalgae lipid-pigment complexes opens the door to the development of alternative natural preparations for the prevention of microbial contamination of feed. Because of their biological activity, Baltic Sea microalgae can be used as an alternative to banned antibiotics in a variety of fields, including agriculture, medicine, cosmetology, and food preservation.


Assuntos
Chlorella vulgaris , Microalgas , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Biomassa , Escherichia coli , Ácidos Graxos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Água
13.
Plants (Basel) ; 11(18)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145820

RESUMO

The demographic situation of the last few decades is characterized by the increased numbers of elderly and senile people, i.e., by the aging of the population. In humans, ageing is closely associated with the enhanced production of reactive oxygen species (ROS), development of systemic inflammation and related vascular atherosclerotic alterations and metabolic disorders, like obesity, diabetes mellitus and neurodegenerative diseases. As these age-related alterations are directly associated with up-regulation of ROS production and development of chronic oxidative stress, their onset can be essentially delayed by continuous daily consumption of dietary antioxidants-natural products of plant origin. Such antioxidants (in the form of plant extracts, biologically active complexes or individual compounds) can be supplemented to functional foods, i.e., dietary supplementations for daily diet aiming prolongation of active life and delay of the senescence onset. Thereby, use of widely spread medicinal plants might essentially improve cost efficiency of this strategy and availability of antioxidant-rich functional foods. Therefore, here we addressed, to the best of our knowledge for the first time, the antioxidant activity of the extracts prepared from the aerial parts of Filipendula ulmaria and Alnus glutinosa growing in the Kaliningrad region of Russia, and assessed the contents of the biologically active substances underlying these properties. It was found that the extract prepared with the leaves of Filipendula ulmaria and female catkins of Alnus glutinosa demonstrated high antioxidant activity, although the former plant was featured with a higher antioxidant potential. The highest antioxidant activity detected in the methanol extracts of Alnus glutinosa reached 1094.02 ± 14.53 µmol TE/g, radical scavenging of activity was 584.45 ± 35.3 µmol TE/g, reducing capacity at interaction with iron complex-471.63 ± 7.06 µmol TE/g. For the methanol extracts of Filipendula ulmaria the antioxidant activity reached 759.78 ± 19.08 µmol TE/g, antioxidant activity for free radical removal was 451.08 ± 24.45 µmol TE/g and antioxidant activity for restorative ability with iron complex was 332.28 ± 10.93 µmol TE/g. These values are consistent with the total yields of the extracts and their content of ellagic acid. The ethyl acetate extracts of the both plants showed just minimal antioxidant activity. Thus, the considered extracts have an essential potential. This creates good prospects for the further use of herbal extracts of Filipendula ulmaria and Alnus glutinosa as a source of natural antioxidants.

14.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897799

RESUMO

The development and pathogenesis of atherosclerosis are significantly influenced by lifestyle, particularly nutrition. The modern level of science and technology development promote personalized nutrition as an efficient preventive measure against atherosclerosis. In this survey, the factors were revealed that contribute to the formation of an individual approach to nutrition: genetic characteristics, the state of the microbiota of the gastrointestinal tract (GIT) and environmental factors (diets, bioactive components, cardioprotectors, etc.). In the course of the work, it was found that in order to analyze the predisposition to atherosclerosis associated with nutrition, genetic features affecting the metabolism of nutrients are significant. The genetic features include the presence of single nucleotide polymorphisms (SNP) of genes and epigenetic factors. The influence of telomere length on the pathogenesis of atherosclerosis and circadian rhythms was also considered. Relatively new is the study of the relationship between chrono-nutrition and the development of metabolic diseases. That is, to obtain the relationship between nutrition and atherosclerosis, a large number of genetic markers should be considered. In this relation, the question arises: "How many genetic features need to be analyzed in order to form a personalized diet for the consumer?" Basically, companies engaged in nutrigenetic research and choosing a diet for the prevention of a number of metabolic diseases use SNP analysis of genes that accounts for lipid metabolism, vitamins, the body's antioxidant defense system, taste characteristics, etc. There is no set number of genetic markers. The main diets effective against the development of atherosclerosis were considered, and the most popular were the ketogenic, Mediterranean, and DASH-diets. The advantage of these diets is the content of foods with a low amount of carbohydrates, a high amount of vegetables, fruits and berries, as well as foods rich in antioxidants. However, due to the restrictions associated with climatic, geographical, material features, these diets are not available for a number of consumers. The way out is the use of functional products, dietary supplements. In this approach, the promising biologically active substances (BAS) that exhibit anti-atherosclerotic potential are: baicalin, resveratrol, curcumin, quercetin and other plant metabolites. Among the substances, those of animal origin are popular: squalene, coenzyme Q10, omega-3. For the prevention of atherosclerosis through personalized nutrition, it is necessary to analyze the genetic characteristics (SNP) associated with the metabolism of nutrients, to assess the state of the microbiota of the GIT. Based on the data obtained and food preferences, as well as the individual capabilities of the consumer, the optimal diet can be selected. It is topical to exclude nutrients of which their excess consumption stimulates the occurrence and pathogenesis of atherosclerosis and to enrich the diet with functional foods (FF), BAS containing the necessary anti-atherosclerotic, and stimulating microbiota of the GIT nutrients. Personalized nutrition is a topical preventive measure and there are a number of problems hindering the active use of this approach among consumers. The key factors include weak evidence of the influence of a number of genetic features, the high cost of the approach, and difficulties in the interpretation of the results. Eliminating these deficiencies will contribute to the maintenance of a healthy state of the population through nutrition.


Assuntos
Aterosclerose , Estado Nutricional , Animais , Aterosclerose/genética , Aterosclerose/prevenção & controle , Dieta , Marcadores Genéticos , Verduras
15.
Animals (Basel) ; 12(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35739821

RESUMO

There are two main reasons for monitoring the population of forest animals. First, regular surveys reveal the real state of biodiversity. Second, they guarantee a prompt response to any negative environmental factor that affects the animal population and make it possible to eliminate the threat before any permanent damage is done. The research objective was to study the potential of drone planes equipped with thermal infrared imaging cameras for large animal monitoring in the conditions of Siberian winter forests with snow background at temperatures -5 °C to -30 °C. The surveyed territory included the Salair State Nature Reserve in the Kemerovo Region, Russia. Drone planes were effective in covering large areas, while thermal infrared cameras provided accurate statistics in the harsh winter conditions of Siberia. The research featured the population of the European elk (Alces alces), which is gradually deteriorating due to poaching and deforestation. The authors developed an effective methodology for processing the data obtained from drone-mounted thermal infrared cameras. The research provided reliable results concerning the changes in the elk population on the territory in question. The use of drone planes proved an effective means of ungulate animal surveying in snow-covered winter forests. The designed technical methods and analytic algorithms are cost-efficient and they can be applied for monitoring large areas of Siberian and Canadian winter forests.

16.
Plants (Basel) ; 11(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35684214

RESUMO

The prohibition of antibiotics has led to extensive research and use of phytogenic feed additives. James Barrie Kirkpatrick described four subspecies of eucalyptus (family Myrtaceae), including Eucalýptus globulus, in 1974. The maximum concentrations of quercetin-3D-glycoside (1703.30 g/mL), astragalin (1737.82 g/mL), chlorogenic acid (342.14 g/mL), catechin (282.54 g/mL), rosmarinic acid (36.39 g/mL), and 3,4-dihydroxybenzoic acid (27.55 g/mL) were found in samples of ultrasonic extraction with ethyl alcohol (extraction module 1:5, temperature of 32 °C, an ultrasonic exposure time of 25 min). Antimicrobial activity was observed in all studied samples after 12 h of incubation (against gram-positive (Bacillus subtilis) and gram-negative (Pseudomonas aeruginosa) bacteria, as well as representatives of yeast fungi (Candida albicans)); a more pronounced antimicrobial effect (lysis zone) was observed after ultrasonic processing of extracts for 20 and 25 min. Bacillus subtilis, Pseudomonas aeruginosa, and Candida albicans had lysis areas of 10.0 mm (20 min extraction with ultrasonic treatment), 13.0 mm (20 min extraction without ultrasonic treatment), and 15.5 mm (25 min extraction with ultrasonic treatment), respectively. E. globulus was demonstrated to be a source of biologically active phenolic compounds with antibacterial and fungicidal activity. More research on the use of E. globulus in feed additives is required.

17.
Plants (Basel) ; 11(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35336662

RESUMO

The beneficial properties of algae make them perfect functional ingredients for food products. Algae have a high energy value and are a source of biologically active substances, proteins, fats, carbohydrates, vitamins, and macro- and microelements. They are also rich in polyunsaturated fatty acids, proteins, mycosporine-like amino acids, polysaccharides, polyphenols, carotenoids, sterols, steroids, lectins, halogenated compounds, polyketides, alkaloids, and carrageenans. Different extraction parameters are used depending on the purpose and the substances to be isolated. In this study, the following parameters were used: hydromodule 1:10 and an extraction duration of 1-2 h at the extraction temperature of 25-40 °C. A 30-50% solution of ethanol in water was used as an extractant. Algae extracts can be considered as potential natural sources of biologically active compounds with antimicrobial activity and antiviral properties. The content of crude protein, crude fat, and carbohydrates in U. Prolifera, C. racemosa var. peltata (Chlorophyta), S. oligocystum and S. fusiforme (SF-1) was studied. It was found that C. muelleri (Bacillariophyta), I. galbana (Haptophyta), and T. weissflogii (Bacillariophyta) contain about 1.9 times more omega-3 than omega-6 fatty acids. N. gaditana (Ochrophyta), D. salina (Chlorophyta), P. tricornutum (Bacillaryophyta) and I. galbana (Haptophyta) extracts showed inhibitory activity of varying intensities against E. coli or P. aeruginosa. In addition, algae and algae-derived compounds have been proposed to offer attractive possibilities in the food industry, especially in the meat sector, to evolve functional foods with myriad functionalities. Algae can increase the biological activity of food products, while the further study of the structure of compounds found in algae can broaden their future application possibilities.

18.
Life (Basel) ; 12(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35207542

RESUMO

BACKGROUND: Currently coal mining employs over 7 million miners globally. This occupational setting is associated with exposure to dust particles, heavy metals, polycyclic aromatic hydrocarbons and radioactive radon, significantly increasing the risk of lung cancer (LC). The susceptibility for LC is modified by genetic variations in xenobiotic detoxification and DNA repair capacity. The aim of this study was to investigate the association between GSTM1 (deletion), APEX1 (rs1130409), XPD (rs13181) and NBS1 (rs1805794) gene polymorphisms and LC risk in patients who worked in coal mines. METHODS: The study included 639 residents of the coal region of Western Siberia (Kemerovo region, Russia): 395 underground miners and 244 healthy men who do not work in industrial enterprises. Genotyping was performed using real-time and allele-specific PCR. RESULTS: The results show that polymorphisms of APEX1 (recessive model: ORadj = 1.87; CI 95%: 1.01-3.48) and XPD (log additive model: ORadj = 2.25; CI 95%: 1.59-3.19) genes were associated with increased LC risk. GSTM1 large deletion l was linked with decreased risk of LC formation (ORadj = 0.59, CI 95%: 0.36-0.98). The multifactor dimensionality reduction method for 3-loci model of gene-gene interactions showed that the GSTM1 (large deletion)-APEX1 (rs1130409)-XPD (rs13181) model was related with a risk of LC development. CONCLUSIONS: The results of this study highlight an association between gene polymorphism combinations and LC risks in coal mine workers.

19.
J Pers Med ; 12(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35207726

RESUMO

More than two billion people around the world are overweight or obese. Even in apparently healthy people, obesity has a potent effect on their quality of life. Experimental data indicate the role of infectious agents in systemic inflammation, revealing a correlation between the dietary habits of people with obesity and the level of systemic inflammation mediators, serum lipid concentration, and hormonal and immune status. This study aimed to determine the association of immune response and lipid metabolism gene polymorphisms with the risk of obesity. This study included 560 Caucasian participants living in Western Siberia (Russian Federation). A total of 52 polymorphic sites in 20 genes were analyzed using the 5' TaqMan nuclease assay. Four risk-associated polymorphic variants were discovered-two variants in immune response genes (IL6R rs2229238, OR = 1.92, 95% CI = 1.36-2.7, p = 0.0002 in the dominant model; IL18 rs1946518, OR = 1.45, 95% CI = 1.03-2.04, p = 0.033 in the over-dominant model) and two variants in lipid metabolism genes (LPA rs10455872, OR = 1.86, 95% CI = 1.07-3.21, p = 0.026 in the log-additive model; LEPR rs1137100, OR = 2.88, 95% CI = 1.52-5.46, p = 0.001 in the recessive model). Thus, polymorphisms in immune response and lipid metabolism genes are potentially associated with the modification of obesity risk in the Caucasian population.

20.
Curr Aging Sci ; 15(2): 121-134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34856917

RESUMO

Aging is an inevitable process of nature. The age of living organisms contributes to the appearance of chronic diseases, which not only reduce the quality of life but also significantly damage it. Modern medicines can successfully fight multiple diseases and prolong life. At the same time, medications have a large number of side effects. New research indicates that bioactive phytochemicals have great potential for treating even the most severe diseases and can become an alternative to medicines. Despite many studies in this area, the effects of many plant ingredients on living organisms are poorly understood. Analysis of the mechanisms through which herbal preparations influence the aging process helps to select the right active substances and determine the optimal doses to obtain the maximum positive effect. It is preferable to check the effectiveness of plant extracts and biologically active components with geroprotective properties in vivo. For these purposes, live model systems, such as Rattusrattus, Musmusculus, Drosophila melanogaster, and Caenorhabditis elegans are used. These models help to comprehensively study the impact of the developed new drugs on the aging process. The model organism C. elegans is gaining increasing popularity in these studies because of its many advantages. This review article discusses the advantages of the nematode C. elegans as a model organism for studying the processes associated with aging. The influence of various BAS and plant extracts on the increase in the life span of the nematode, its stress resistance, and other markers of aging is also considered. The review shows that the nematode C.elegans has a number of advantages over other organisms and is a promising model system for studying the geroprotective properties of BAS.


Assuntos
Caenorhabditis elegans , Drosophila melanogaster , Envelhecimento , Animais , Bioensaio , Extratos Vegetais/farmacologia , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...