Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36557427

RESUMO

Ultrasound power delivery can be considered a convenient technique for charging implantable medical devices. In this work, an intra-body system has been modeled to characterize the phenomenon of ultrasound power transmission. The proposed system comprises a Langevin transducer as transmitter and an AlN-based square piezoelectric micro-machined ultrasonic transducer as receiver. The medium layers, in which elastic waves propagate, were made by polydimethylsiloxane to mimic human tissue and stainless steel to replace the case of the implantable device. To characterize the behavior of the transducers, measurements of impedance and phase, velocity and displacement, and acoustic pressure field were carried out in the experimental activity. Then, voltage and power output were measured to analyze the performance of the ultrasound power delivery system. For a root mean square voltage input of approximately 35 V, the power density resulted in 21.6 µW cm-2. Such a result corresponds to the data obtained with simulation through a one-dimensional lumped parameter transmission line model. The methodology proposed to develop the ultrasound power delivery (UPD) system, as well as the use of non-toxic materials for the fabrication of the intra-body elements, are a valid design approach to raise awareness of using wireless power transfer techniques for charging implantable devices.

2.
Diagnostics (Basel) ; 12(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36292096

RESUMO

The jugular venous pulse (JVP) is a one of the crucial parameters of efficient cardiovascular function. Nowadays, limited data are available regarding the response of JVP to exercise because of its complex and/or invasive assessment procedure. The aim of the present work is to test the feasibility of a non-invasive JVP plethysmography system to monitor different submaximal exercise condition. Twenty (20) healthy subjects (13M/7F mean age 25 ± 3, BMI 21 ± 2) underwent cervical strain-gauge plethysmography, acquired synchronously with the electrocardiogram, while they were carrying out different activities: stand supine, upright, and during the execution of aerobic exercise (2 km walking test) and leg-press machine exercise (submaximal 6 RM test). Peaks a and x of the JVP waveform were investigated since they reflect the volume of cardiac filling. To this aim, the Δax parameter was introduced, representing the amplitude differences between a and x peaks. Significant differences in the values of a, x, and Δax were found between static and exercise conditions (p < 0.0001, p < 0.0001, p < 0.0001), respectively. Particularly, the Δax value for the leg press was approximately three times higher than the supine, and during walking was even nine times higher. The exercise monitoring by means of the novel JVP plethysmography system is feasible during submaximal exercise, and it provides additional parameters on cardiac filling and cerebral venous drainage to the widely used heartbeat rate value.

3.
Biomedicines ; 10(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35453637

RESUMO

This work analyses the results of research regarding the predisposition of genetic hematological risks associated with secondary polyglobulia. The subjects of the study were selected based on shared laboratory markers and basic clinical symptoms. JAK2 (Janus Kinase 2) mutation negativity represented the common genetic marker of the subjects in the sample of interest. A negative JAK2 mutation hypothetically excluded the presence of an autonomous myeloproliferative disease at the time of detection. The parameters studied in this work focused mainly on thrombotic, immunological, metabolic, and cardiovascular risks. The final goal of the work was to discover the most significant key markers for the diagnosis of high-risk patients and to exclude the less important or only complementary markers, which often represent a superfluous economic burden for healthcare institutions. These research results are applicable as a clinical guideline for the effective diagnosis of selected parameters that demonstrated high sensitivity and specificity. According to the results obtained in the present research, groups with a high incidence of mutations were evaluated as being at higher risk for polycythemia vera disease. It was not possible to clearly determine which of the patients examined had a higher risk of developing the disease as different combinations of mutations could manifest different symptoms of the disease. In general, the entire study group was at risk for manifestations of polycythemia vera disease without a clear diagnosis. The group with less than 20% incidence appeared to be clinically insignificant for polycythemia vera testing and thus there is a potential for saving money in mutation testing. On the other hand, the JAK V617F (somatic mutation of JAK2) parameter from this group should be investigated as it is a clear exclusion or confirmation of polycythemia vera as the primary disease.

4.
Diagnostics (Basel) ; 11(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34943625

RESUMO

Cerebral venous outflow is investigated in the diagnosis of heart failure through the monitoring of jugular venous pulse, an indicator to assess cardiovascular diseases. The jugular venous pulse is a weak signal stemming from the lying internal jugular vein and often invasive methodologies requiring surgery are mandatory to detect it. Jugular venous pulse can also be extrapolated via the ultrasound technique, but it requires a qualified healthcare operator to perform the examination. In this work, a wireless, user-friendly, wearable device for plethysmography is developed to investigate the possibility of monitoring the jugular venous pulse non-invasively. The proposed device can monitor the jugular venous pulse and the electrocardiogram synchronously. To study the feasibility of using the proposed device to detect physiological variables, several measurements were carried out on healthy subjects by considering three different postures: supine, sitting, and upright. Data acquired in the experiment were properly filtered to highlight the cardiac oscillation and remove the breathing contribution, which causes a considerable shift in the amplitude of signals. To evaluate the proper functioning of the wearable device for plethysmography, a comparison with the ultrasound technique was carried out. As a satisfactory result, the acquired signals resemble the typical jugular venous pulse waveforms found in literature.

5.
Sensors (Basel) ; 20(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859035

RESUMO

The work investigates the application of artificial neural networks and logistic regression for the recognition of activities performed by room occupants. KNX (Konnex) standard-based devices were selected for smart home automation and data collection. The obtained data from these devices (Humidity, CO2, temperature) were used in combination with two wearable gadgets to classify specific activities performed by the room occupant. The obtained classifications can benefit the occupant by monitoring the wellbeing of elderly residents and providing optimal air quality and temperature by utilizing heating, ventilation, and air conditioning control. The obtained results yield accurate classification.


Assuntos
Atividades Humanas , Dispositivos Eletrônicos Vestíveis , Idoso , Ar Condicionado , Poluição do Ar , Dióxido de Carbono , Calefação , Humanos , Umidade , Modelos Logísticos , Redes Neurais de Computação , Temperatura , Ventilação
6.
Sensors (Basel) ; 18(6)2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29899308

RESUMO

This work analyzes the results of measurements on thermal energy harvesting through a wearable Thermo-electric Generator (TEG) placed on the arms and legs. Four large skin areas were chosen as locations for the placement of the TEGs. In order to place the generator on the body, a special manufactured band guaranteed the proper contact between the skin and TEG. Preliminary measurements were performed to find out the value of the resistor load which maximizes the power output. Then, an experimental investigation was conducted for the measurement of harvested energy while users were performing daily activities, such as sitting, walking, jogging, and riding a bike. The generated power values were in the range from 5 to 50 μW. Moreover, a preliminary hypothesis based on the obtained results indicates the possibility to use TEGs on leg for the recognition of locomotion activities. It is due to the rather high and different biomechanical work, produced by the gastrocnemius muscle, while the user is walking rather than jogging or riding a bike. This result reflects a difference between temperatures associated with the performance of different activities.


Assuntos
Braço , Fontes de Energia Bioelétrica , Temperatura Corporal/fisiologia , Perna (Membro) , Temperatura , Dispositivos Eletrônicos Vestíveis , Braço/fisiologia , Ciclismo/fisiologia , Eletricidade , Humanos , Perna (Membro)/fisiologia , Locomoção/fisiologia , Corrida/fisiologia , Pele/metabolismo , Caminhada/fisiologia
7.
Trends Biotechnol ; 35(7): 610-624, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28506573

RESUMO

Humans generate remarkable quantities of energy while performing daily activities, but this energy usually dissipates into the environment. Here, we address recent progress in the development of nanogenerators (NGs): devices that are able to harvest such body-produced biomechanical and thermal energies by exploiting piezoelectric, triboelectric, and thermoelectric physical effects. In designing NGs, the end-user's comfort is a primary concern. Therefore, we focus on recently developed materials giving flexibility and stretchability to NGs. In addition, we summarize common fabrics for NG design. Finally, the mid-2020s market forecasts for these promising technologies highlight the potential for the commercialization of NGs because they may help contribute to the route of innovation for developing self-powered systems.


Assuntos
Energia Renovável , Têxteis , Humanos
8.
Sensors (Basel) ; 16(4)2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27077867

RESUMO

In this paper, two different piezoelectric transducers-a ceramic piezoelectric, lead zirconate titanate (PZT), and a polymeric piezoelectric, polyvinylidene fluoride (PVDF)-were compared in terms of energy that could be harvested during locomotion activities. The transducers were placed into a tight suit in proximity of the main body joints. Initial testing was performed by placing the transducers on the neck, shoulder, elbow, wrist, hip, knee and ankle; then, five locomotion activities-walking, walking up and down stairs, jogging and running-were chosen for the tests. The values of the power output measured during the five activities were in the range 6 µW-74 µW using both transducers for each joint.


Assuntos
Técnicas Biossensoriais/instrumentação , Locomoção/fisiologia , Monitorização Fisiológica , Caminhada/fisiologia , Humanos , Articulação do Joelho/fisiologia , Chumbo/química , Polivinil/química , Titânio/química , Transdutores , Zircônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...