Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Dev Orig Health Dis ; 13(6): 706-718, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35593438

RESUMO

Children of women with pre-eclampsia have increased risk of cardiovascular (CV) and metabolic disease in adult life. Furthermore, the risk of pregnancy complications is higher in daughters born to women affected by pre-eclampsia than in daughters born after uncomplicated pregnancies. While aberrant inflammation contributes to the pathophysiology of pregnancy complications, including pre-eclampsia, the contribution of maternal inflammation to subsequent risk of CV and metabolic disease as well as pregnancy complications in the offspring remains unclear. Here, we demonstrate that 24-week-old female rats (F1) born to dams (F0) exposed to lipopolysaccharide (LPS) during pregnancy (to induce inflammation) exhibited mild systolic dysfunction, increased cardiac growth-related gene expression, altered glucose tolerance, and coagulopathy; whereas male F1 offspring exhibited altered glucose tolerance and increased visceral fat accumulation compared with F1 sex-matched offspring born to saline-treated dams. Both male and female F1 offspring born to LPS-treated dams had evidence of anemia. Fetuses (F2) from F1 females born to LPS-treated dams were growth restricted, and this reduction in fetal growth was associated with increased CD68 positivity (indicative of macrophage presence) and decreased expression of glucose transporter-1 in their utero-placental units. These results indicate that abnormal maternal inflammation can contribute to increased risk of CV and metabolic disease in the offspring, and that the effects of inflammation may cross generations. Our findings provide evidence in support of early screening for CV and metabolic disease, as well as pregnancy complications in offspring affected by pre-eclampsia or other pregnancy complications associated with aberrant inflammation.


Assuntos
Doenças Cardiovasculares , Pré-Eclâmpsia , Efeitos Tardios da Exposição Pré-Natal , Humanos , Ratos , Feminino , Gravidez , Masculino , Animais , Retardo do Crescimento Fetal , Pré-Eclâmpsia/etiologia , Placenta/metabolismo , Lipopolissacarídeos/metabolismo , Inflamação/metabolismo , Doenças Cardiovasculares/metabolismo , Glucose/metabolismo
3.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360885

RESUMO

The perinuclear theca (PT) of the eutherian sperm head is a cytoskeletal-like structure that houses proteins involved in important cellular processes during spermiogenesis and fertilization. Building upon our novel discovery of non-nuclear histones in the bovine PT, we sought to investigate whether this PT localization was a conserved feature of eutherian sperm. Employing cell fractionation, immunodetection, mass spectrometry, qPCR, and intracytoplasmic sperm injections (ICSI), we examined the localization, developmental origin, and functional potential of histones from the murid PT. Immunodetection localized histones to the post-acrosomal sheath (PAS) and the perforatorium (PERF) of the PT but showed an absence in the sperm nucleus. MS/MS analysis of selectively extracted PT histones indicated that predominately core histones (i.e., H3, H3.3, H2B, H2A, H2AX, and H4) populate the murid PT. These core histones appear to be de novo-synthesized in round spermatids and assembled via the manchette during spermatid elongation. Mouse ICSI results suggest that early embryonic development is delayed in the absence of PT-derived core histones. Here, we provide evidence that core histones are de novo-synthesized prior to PT assembly and deposited in PT sub-compartments for subsequent involvement in chromatin remodeling of the male pronucleus post-fertilization.


Assuntos
Histonas/biossíntese , Cabeça do Espermatozoide/metabolismo , Espermátides/metabolismo , Espermatogênese/fisiologia , Animais , Núcleo Celular/metabolismo , Cromatografia Líquida/métodos , Feminino , Fertilização/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Injeções de Esperma Intracitoplásmicas , Espectrometria de Massas em Tandem/métodos
4.
Biol Reprod ; 101(2): 368-376, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087045

RESUMO

The postacrosomal sheath (PAS) of the perinuclear theca (PT) is the first compartment of the sperm head to solubilize into the ooplasm upon sperm-oocyte fusion, implicating its constituents in zygotic development. This study investigates the role of one such constituent, glutathione-S-transferase omega 2 (GSTO2), an oxidative-reductive enzyme found in the PAS and perforatorial regions of the PT. GSTO2 uses the conjugation of reduced glutathione, an electron donor shown to be compulsory in sperm disassembly within the ooplasm. The proximity of GSTO2 to the condensed sperm nucleus led us to hypothesize that this enzyme may facilitate nuclear decondensation by reducing disulfide bonds before the recruitment of GSTO enzymes from within the ooplasm. To test this hypothesis, we utilized a cell permeable isozyme-specific inhibitor, which fluoresces when bound to the active site of GSTO2, to functionally inhibit spermatozoa before performing intracytoplasmic sperm injections (ICSI) in mice. The technique allowed for targeted inhibition of solely PT-residing GSTO2, as all that is required for complete zygotic development is the injection of the mouse spermatozoon head. ICSI showed that inhibition of PT-anchored GSTO2 caused a delay in sperm nuclear decondensation, and further resulted in untimely embryo cleavage, and an increase in fragmentation beginning at the morula stage. The confounding effects of these developmental delays ultimately resulted in decreased blastocyst formation. This study implicates PT-anchored GSTO2 as an important facilitator of nuclear decondensation and reinforces the notion that the PAS-PT is a critical sperm compartment harboring molecules that facilitate zygotic development.


Assuntos
Glutationa Transferase/metabolismo , Cabeça do Espermatozoide/fisiologia , Espermatozoides/enzimologia , Sequência de Aminoácidos , Animais , Feminino , Glutationa Transferase/química , Glutationa Transferase/genética , Masculino , Camundongos , Injeções de Esperma Intracitoplásmicas/métodos , Interações Espermatozoide-Óvulo/fisiologia
5.
Biol Reprod ; 100(6): 1461-1472, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939204

RESUMO

The perinuclear theca (PT) is a cytosolic protein capsule that surrounds the nucleus of eutherian spermatozoa. Compositionally, it is divided into two regions: the subacrosomal layer (SAL) and the postacrosomal sheath (PAS). In falciform spermatozoa, a third region of the PT emerges that extends beyond the nuclear apex called the perforatorium. The formation of the SAL and PAS differs, with the former assembling early in spermiogenesis concomitant with acrosome formation, and the latter dependent on manchette descent during spermatid elongation. The perforatorium also forms during the elongation phase of spermiogenesis, suggesting that like the PAS, its assembly is facilitated by the manchette. The temporal similarity in biogenesis between the PAS and perforatorium led us to compare their molecular composition using cell fractionation and immunodetection techniques. Although the perforatorium is predominantly composed of its endemic protein FABP9/PERF15, immunolocalization indicates that it also shares proteins with the PAS. These include WBP2NL/PAWP, WBP2, GSTO2, and core histones, which have been implicated in early fertilization and zygotic events. The compositional homogeny between the PAS and perforatorium supports our observation that their development is linked. Immunocytochemistry indicates that both PAS and perforatorial biogenesis depend on the transport and deposition of cytosolic proteins by the microtubular manchette. Proteins translocated from the manchette pass ventrally along the spermatid head into the apical perforatorial space prior to PAS deposition in the wake of manchette descent. Our findings demonstrate that the perforatorium and PAS share a mechanism of developmental assembly and thereby contain common proteins that facilitate fertilization.


Assuntos
Acrossomo , Proteínas/metabolismo , Cabeça do Espermatozoide , Espermatogênese/fisiologia , Acrossomo/metabolismo , Acrossomo/ultraestrutura , Animais , Bovinos , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Humanos , Masculino , Proteínas/análise , Ratos , Ratos Sprague-Dawley , Análise do Sêmen , Cabeça do Espermatozoide/metabolismo , Cabeça do Espermatozoide/ultraestrutura , Espermatozoides/citologia , Espermatozoides/metabolismo , Espermatozoides/ultraestrutura , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...