Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(20): 32717-32726, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37859067

RESUMO

Quantum photonic processing via electro-optic components typically requires electronic links across different operation environments, especially when interfacing cryogenic components such as superconducting single photon detectors with room-temperature control and readout electronics. However, readout and driving electronics can introduce detrimental parasitic effects. Here we show an all-optical control and readout of a superconducting nanowire single photon detector (SNSPD), completely electrically decoupled from room temperature electronics. We provide the operation power for the superconducting detector via a cryogenic photodiode, and readout single photon detection signals via a cryogenic electro-optic modulator in the same cryostat. This method opens the possibility for control and readout of superconducting circuits, and feedforward for photonic quantum computing.

2.
Nano Lett ; 23(8): 3196-3201, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37068046

RESUMO

Dispersion is present in every optical setup and is often an undesired effect, especially in nonlinear-optical experiments where ultrashort laser pulses are needed. Typically, bulky pulse compressors consisting of gratings or prisms are used to address this issue by precompensating the dispersion of the optical components. However, these devices are only able to compensate for a part of the dispersion (second-order dispersion). Here, we present a compact pulse-shaping device that uses plasmonic metasurfaces to apply an arbitrarily designed spectral phase delay allowing for a full dispersion control. Furthermore, with specific phase encodings, this device can be used to temporally reshape the incident laser pulses into more complex pulse forms such as a double pulse. We verify the performance of our device by using an SHG-FROG measurement setup together with a retrieval algorithm to extract the dispersion that our device applies to an incident laser pulse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA