Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genome Med ; 9(1): 83, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28934986

RESUMO

BACKGROUND: Exon-targeted microarrays can detect small (<1000 bp) intragenic copy number variants (CNVs), including those that affect only a single exon. This genome-wide high-sensitivity approach increases the molecular diagnosis for conditions with known disease-associated genes, enables better genotype-phenotype correlations, and facilitates variant allele detection allowing novel disease gene discovery. METHODS: We retrospectively analyzed data from 63,127 patients referred for clinical chromosomal microarray analysis (CMA) at Baylor Genetics laboratories, including 46,755 individuals tested using exon-targeted arrays, from 2007 to 2017. Small CNVs harboring a single gene or two to five non-disease-associated genes were identified; the genes involved were evaluated for a potential disease association. RESULTS: In this clinical population, among rare CNVs involving any single gene reported in 7200 patients (11%), we identified 145 de novo autosomal CNVs (117 losses and 28 intragenic gains), 257 X-linked deletion CNVs in males, and 1049 inherited autosomal CNVs (878 losses and 171 intragenic gains); 111 known disease genes were potentially disrupted by de novo autosomal or X-linked (in males) single-gene CNVs. Ninety-one genes, either recently proposed as candidate disease genes or not yet associated with diseases, were disrupted by 147 single-gene CNVs, including 37 de novo deletions and ten de novo intragenic duplications on autosomes and 100 X-linked CNVs in males. Clinical features in individuals with de novo or X-linked CNVs encompassing at most five genes (224 bp to 1.6 Mb in size) were compared to those in individuals with larger-sized deletions (up to 5 Mb in size) in the internal CMA database or loss-of-function single nucleotide variants (SNVs) detected by clinical or research whole-exome sequencing (WES). This enabled the identification of recently published genes (BPTF, NONO, PSMD12, TANGO2, and TRIP12), novel candidate disease genes (ARGLU1 and STK3), and further confirmation of disease association for two recently proposed disease genes (MEIS2 and PTCHD1). Notably, exon-targeted CMA detected several pathogenic single-exon CNVs missed by clinical WES analyses. CONCLUSIONS: Together, these data document the efficacy of exon-targeted CMA for detection of genic and exonic CNVs, complementing and extending WES in clinical diagnostics, and the potential for discovery of novel disease genes by genome-wide assay.


Assuntos
Variações do Número de Cópias de DNA , Éxons , Doenças Genéticas Inatas , Estudos de Coortes , Genoma Humano , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas Serina-Treonina Quinases/genética , Estudos Retrospectivos , Serina-Treonina Quinase 3 , Fatores de Transcrição/genética , Sequenciamento Completo do Genoma
2.
Am J Med Genet A ; 170(11): 2943-2955, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27410714

RESUMO

Chromosome 16p11.2 deletions and duplications are among the most frequent genetic etiologies of autism spectrum disorder (ASD) and other neurodevelopmental disorders, but detailed descriptions of their neurologic phenotypes have not yet been completed. We utilized standardized examination and history methods to characterize a neurologic phenotype in 136 carriers of 16p11.2 deletion and 110 carriers of 16p11.2 duplication-the largest cohort to date of uniformly and comprehensively characterized individuals with the same 16p copy number variants (CNVs). The 16p11.2 deletion neurologic phenotype is characterized by highly prevalent speech articulation abnormalities, limb and trunk hypotonia with hyporeflexia, abnormalities of agility, sacral dimples, seizures/epilepsy, large head size/macrocephaly, and Chiari I/cerebellar tonsillar ectopia. Speech articulation abnormalities, hypotonia, abnormal agility, sacral dimples, and seizures/epilepsy are also seen in duplication carriers, along with more prominent hyperreflexia; less, though still prevalent, hyporeflexia; highly prevalent action tremor; small head size/microcephaly; and cerebral white matter/corpus callosum abnormalities and ventricular enlargement. The neurologic phenotypes of these reciprocal 16p11.2 CNVs include both shared and distinct features. Reciprocal phenotypic characteristics of predominant hypo- versus hyperreflexia and macro- versus microcephaly may reflect opposite neurobiological abnormalities with converging effects causing the functional impairments shared between 16p11.2 deletion and duplication carriers (i.e., abnormal motor agility and articulation). While the phenotypes exhibit overlap with other genetically-caused neurodevelopmental disorders, clinicians should be aware of the more striking features-such as the speech and motor impairments, growth abnormalities, tremor, and sacral dimples-when evaluating individuals with developmental delay, intellectual disability, ASD, and/or language disorders. © 2016 Wiley Periodicals, Inc.


Assuntos
Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Duplicação Cromossômica , Cromossomos Humanos Par 16 , Fenótipo , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Eletroencefalografia , Epilepsia/diagnóstico , Epilepsia/genética , Feminino , Genótipo , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Clin Pediatr (Phila) ; 54(14): 1322-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26130396

RESUMO

Increased public awareness of autism spectrum disorders (ASD) and routine screening in primary care have contributed to increased requests for diagnostic ASD evaluations. However, given the scarcity of subspecialty autism diagnostic resources, overreferral of children suspected of having ASD may be contributing to long waiting lists at tertiary care autism centers and delaying diagnosis for those children who truly have ASD. To determine whether children are being excessively referred to ASD-specific diagnostic clinics, our objective was to determine the prevalence of true ASD diagnoses in children referred for diagnostic ASD evaluation. Charts of all patients referred to a regional autism center between April 2011 and August 2012 for suspicion of a possible ASD were retrospectively reviewed and demographic and clinical diagnoses abstracted. Only 214 of 348 patients evaluated (61%) received an ASD diagnosis. Thus, concerns about autism are not confirmed by an ASD diagnosis in a significant number of children.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Transtorno Autístico/diagnóstico , Transtorno do Espectro Autista/epidemiologia , Transtorno Autístico/epidemiologia , Lista de Checagem , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Prevalência , Encaminhamento e Consulta , Estudos Retrospectivos , Inquéritos e Questionários , Estados Unidos/epidemiologia
4.
Eur J Hum Genet ; 20(2): 176-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21934713

RESUMO

Submicroscopic deletions involving chromosome 1q43-q44 result in cognitive impairment, microcephaly, growth restriction, dysmorphic features, and variable involvement of other organ systems. A consistently observed feature in patients with this deletion are the corpus callosal abnormalities (CCAs), ranging from thinning and hypoplasia to complete agenesis. Previous studies attempting to delineate the critical region for CCAs have yielded inconsistent results. We conducted a detailed clinical and molecular characterization of seven patients with deletions of chromosome 1q43-q44. Using array comparative genomic hybridization, we mapped the size, extent, and genomic content of these deletions. Four patients had CCAs, and shared the smallest region of overlap that contains only three protein coding genes, CEP170, SDCCAG8, and ZNF238. One patient with a small deletion involving SDCCAG8 and AKT3, and another patient with an intragenic deletion of AKT3 did not have any CCA, implying that the loss of these two genes is unlikely to be the cause of CCA. CEP170 is expressed extensively in the brain, and encodes for a protein that is a component of the centrosomal complex. ZNF238 is involved in control of neuronal progenitor cells and survival of cortical neurons. Our results rule out the involvement of AKT3, and implicate CEP170 and/or ZNF238 as novel genes causative for CCA in patients with a terminal 1q deletion.


Assuntos
Agenesia do Corpo Caloso/genética , Deleção Cromossômica , Cromossomos Humanos Par 1 , Adolescente , Criança , Pré-Escolar , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Feminino , Ordem dos Genes , Humanos , Lactente , Masculino
5.
J Med Genet ; 47(5): 332-41, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19914906

RESUMO

BACKGROUND: Deletion and the reciprocal duplication in 16p11.2 were recently associated with autism and developmental delay. METHOD: We indentified 27 deletions and 18 duplications of 16p11.2 were identified in 0.6% of all samples submitted for clinical array-CGH (comparative genomic hybridisation) analysis. Detailed molecular and phenotypic characterisations were performed on 17 deletion subjects and ten subjects with the duplication. RESULTS: The most common clinical manifestations in 17 deletion and 10 duplication subjects were speech/language delay and cognitive impairment. Other phenotypes in the deletion patients included motor delay (50%), seizures ( approximately 40%), behavioural problems ( approximately 40%), congenital anomalies ( approximately 30%), and autism ( approximately 20%). The phenotypes among duplication patients included motor delay (6/10), behavioural problems (especially attention deficit hyperactivity disorder (ADHD)) (6/10), congenital anomalies (5/10), and seizures (3/10). Patients with the 16p11.2 deletion had statistically significant macrocephaly (p<0.0017) and 6 of the 10 patients with the duplication had microcephaly. One subject with the deletion was asymptomatic and another with the duplication had a normal cognitive and behavioural phenotype. Genomic analyses revealed additional complexity to the 16p11.2 region with mechanistic implications. The chromosomal rearrangement was de novo in all but 2 of the 10 deletion cases in which parental studies were available. Additionally, 2 de novo cases were apparently mosaic for the deletion in the analysed blood sample. Three de novo and 2 inherited cases were observed in the 5 of 10 duplication patients where data were available. CONCLUSIONS: Recurrent reciprocal 16p11.2 deletion and duplication are characterised by a spectrum of primarily neurocognitive phenotypes that are subject to incomplete penetrance and variable expressivity. The autism and macrocephaly observed with deletion and ADHD and microcephaly seen in duplication patients support a diametric model of autism spectrum and psychotic spectrum behavioural phenotypes in genomic sister disorders.


Assuntos
Anormalidades Múltiplas/genética , Aberrações Cromossômicas , Cromossomos Humanos Par 16/genética , Deficiências do Desenvolvimento/genética , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno Autístico/genética , Criança , Pré-Escolar , Deleção Cromossômica , Hibridização Genômica Comparativa , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Epilepsia/genética , Feminino , Humanos , Lactente , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Microcefalia/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Duplicações Segmentares Genômicas , Adulto Jovem
6.
Am J Med Genet A ; 149A(8): 1758-62, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19606485

RESUMO

Individuals with autism spectrum disorders have impairments in social, communicative, and behavior development that are often accompanied by abnormalities in cognitive functioning, learning, attention, and sensory processing. In this report, we describe a 3-year-old male child with an autism spectrum disorder who carries a 2 Mb deletion of chromosome 1q42. Array comparative genome hybridization revealed that this deletion involves at least three genes-DISC1, DISC2, and TSNAX-which have been found to be associated with neuropsychiatric disorders and are likely to play key roles in normal CNS development. Further studies revealed that the deletion was inherited from his unaffected mother. This suggests that other genetic and/or environmental factors, some of which may be sex specific, may modify the phenotypic effects of this deletion. While this case provides evidence for the potential role of DISC1, DISC2, and TSNAX in the development of autism spectrum disorders, it is equally clear that caution must be taken when providing families with prognostic information and genetic counseling regarding such deletions.


Assuntos
Transtorno Autístico/genética , Deleção Cromossômica , Cromossomos Humanos Par 1/genética , Proteínas de Ligação a DNA/genética , Proteínas do Tecido Nervoso/genética , Pré-Escolar , Hibridização Genômica Comparativa , Humanos , Masculino , RNA Longo não Codificante , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA