Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 61(30): 7349-56, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23834908

RESUMO

Maize ( Zea mays ) is an important staple crop in many parts of the world but has low iron bioavailability, in part due to its high phytate content. Hemoglobin is a form of iron that is highly bioavailable, and its bioavailability is not inhibited by phytate. It was hypothesized that maize hemoglobin is a highly bioavailable iron source and that biofortification of maize with iron can be accomplished by overexpression of maize globin in the endosperm. Maize was transformed with a gene construct encoding a translational fusion of maize globin and green fluorescent protein under transcriptional control of the maize 27 kDa γ-zein promoter. Iron bioavailability of maize hemoglobin produced in Escherichia coli and of stably transformed seeds expressing the maize globin-GFP fusion was determined using an in vitro Caco-2 cell culture model. Maize flour fortified with maize hemoglobin was found to have iron bioavailability that is not significantly different from that of flour fortified with ferrous sulfate or bovine hemoglobin but is significantly higher than unfortified flour. Transformed maize grain expressing maize globin was found to have iron bioavailability similar to that of untransformed seeds. These results suggest that maize globin produced in E. coli may be an effective iron fortificant, but overexpressing maize globin in maize endosperm may require a different strategy to increase bioavailable iron content in maize.


Assuntos
Hemoglobinas/metabolismo , Mucosa Intestinal/metabolismo , Ferro/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Verduras/metabolismo , Zea mays/metabolismo , Disponibilidade Biológica , Células CACO-2 , Alimentos Fortificados , Hemoglobinas/análise , Hemoglobinas/genética , Humanos , Modelos Biológicos , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Verduras/química , Verduras/genética , Zea mays/química , Zea mays/genética
2.
J Agric Food Chem ; 55(7): 2749-54, 2007 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-17355139

RESUMO

Maize is one of the most important cereal crops for human consumption, yet it is of concern due to its low iron bioavailability. The objective of this study was to determine the effects of processing on iron bioavailability in common maize products and elucidate better processing techniques for enhancing iron bioavailability. Maize products were processed to represent different processing techniques: heating (porridge), fermentation (ogi), nixtamalization (tortillas), and decortication (arepas). Iron and phytate contents were evaluated. Iron bioavailability was assessed using the Caco-2 cell model. Phytate content of maize products was significantly reduced by decortication (25.6%, p = 0.003) and nixtamalization (15%, p = 0.03), and iron content was reduced by decortication (29.1%, p = 0.002). The relative bioavailability (RBA, compared to 100% bioavailability of porridge with FeSO4) of ogi was significantly higher than that of other products when fortified with FeSO4 (p < 0.001) or reduced iron (p < 0.001). Addition of lactic acid (6 mg/g of maize) significantly increased iron solubility and increased bioavailability by about 2-fold (p < 0.01), especially in tortillas. The consumer panel results showed that lactic acid addition does not significantly affect the organoleptic characteristics of tortillas and arepas (p = 0.166 and 0.831, respectively). The results suggest that fermentation, or the addition of small amounts of lactic acid to unfermented maize products, may significantly improve iron bioavailability. Lactic acid addition may be more feasible than the addition of highly bioavailable but expensive fortificants. This approach may be a novel means to increase the iron bioavailability of maize products to reduce the incidence of iron deficiency anemia.


Assuntos
Fermentação , Ferro/farmacocinética , Ácido Láctico/administração & dosagem , Zea mays/química , Disponibilidade Biológica , Manipulação de Alimentos/métodos , Ferro/análise , Ácido Fítico/análise , Solubilidade
3.
J Agric Food Chem ; 54(4): 1518-22, 2006 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-16478282

RESUMO

Heme iron has been identified in many plant sources-most commonly in the root nodules of leguminous plants, such as soy. Our objective was to test the effectiveness of soy root nodule (SRN) and purified soy hemoglobin (LHb) in improving iron bioavailability using an in vitro Caco-2 cell model, with ferritin response as the bioavailability index. We assessed bioavailability of iron from LHb (either partially purified (LHbA) or purified (LHbD)) with and without food matrix and compared it with that from bovine hemoglobin (BHb), ferrous sulfate (FeSO4), or SRN. Bioavailability of each treatment was normalized to 100% of the FeSO4 treatment. When iron sources were tested alone (100 ug iron/mL), ferritin synthesis by LHbD and BHb were 19% (P > 0.05) and 113% (P < 0.001) higher than FeSO4, respectively. However, when iron sources were used for fortification of maize tortillas (50 ppm), LHbA and BHb showed similar bioavailability, being 27% (P < 0.05) and 33% (P < 0.05) higher than FeSO4. Heat treatment had no effect on heme iron but had a significant reduction on FeSO4 bioavailability. Adding heme (LHbA) iron with nonheme (FeSO4) had no enhancement on nonheme iron absorption. Our data suggest that heme iron from plant sources may be a novel value-added product that can provide highly bioavailable iron as a food fortificant.


Assuntos
Glycine max/química , Ferro/farmacocinética , Leghemoglobina/química , Raízes de Plantas/química , Disponibilidade Biológica , Células CACO-2 , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...