Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(20): 14561-14572, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722083

RESUMO

Zeolites are versatile materials renowned for their extra-framework cation exchange capabilities, with applications spanning diverse fields, including nuclear waste treatment. While detailed experimental characterization offers valuable insight, density functional theory (DFT) proves particularly adept at investigating ion exchange in zeolites, owing to its atomic and electronic resolution. However, the prevalent occurrence of zeolitic ion exchange in aqueous environments poses a challenge to conventional DFT modeling, traditionally conducted in a vacuum. This study seeks to enhance zeolite modeling by systematically evaluating predictive differences across varying degrees of aqueous solvent inclusion. Specifically focusing on monovalent cation exchange in Na-X zeolites, we explore diverse modeling approaches. These range from simple dehydrated systems (representing bare reference states in vacuum) to more sophisticated models that incorporate aqueous solvent effects through explicit water molecules and/or a dielectric medium. Through comparative analysis of DFT and semi-empirical DFT approaches, along with their validation against experimental results, our findings underscore the necessity to concurrently consider explicit and implicit solvent effects for accurate prediction of zeolitic ionic exchange.

2.
J Am Chem Soc ; 144(35): 16139-16149, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36027644

RESUMO

Comparison of defect-controlled leaching-kinetics modulation of metal-organic frameworks (MOFs) and porous functionalized silica-based materials was performed on the example of a radionuclide and radionuclide surrogate for the first time, revealing an unprecedented readsorption phenomenon. On a series of zirconium-based MOFs as model systems, we demonstrated the ability to capture and retain >99% of the transuranic 241Am radionuclide after 1 week of storage. We report the possibility of tailoring radionuclide release kinetics in MOFs through framework defects as a function of postsynthetically installed organic ligands including cation-chelating crown ether-based linkers. Based on comprehensive analysis using spectroscopy (EXAFS, UV-vis, FTIR, and NMR), X-ray crystallography (single crystal and powder), and theoretical calculations (nine kinetics models and structure simulations), we demonstrated the synergy of radionuclide integration methods, topological restrictions, postsynthetic scaffold modification, and defect engineering. This combination is inaccessible in any other material and highlights the advantages of using well-defined frameworks for gaining fundamental knowledge necessary for the advancement of actinide-based material development, providing a pathway for addressing upcoming challenges in the nuclear waste administration sector.


Assuntos
Estruturas Metalorgânicas , Cinética , Estruturas Metalorgânicas/química , Porosidade , Radioisótopos , Zircônio/química
3.
Nanomaterials (Basel) ; 12(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35889559

RESUMO

In the frame of the nanoarchitectonic concept, the objective of this study was to develop simple and easy methods to ensure the preparation of polymorphic HfO2 thin film materials (<200 nm) having the best balance of patterning potential, reproducibility and stability to be used in optical, sensing or electronic fields. The nanostructured HfO2 thin films with micropatterns or continuous morphologies were synthesized by two different methods, i.e., the micropatterning of sol-gel solutions by deep ultraviolet (DUV) photolithography or the electrophoretic deposition (EPD) of HfO2 nanoparticles (HfO2-NPs). Amorphous and monoclinic HfO2 micropatterned nanostructured thin films (HfO2-DUV) were prepared by using a sol-gel solution precursor (HfO2-SG) and spin-coating process following by DUV photolithography, whereas continuous and dense monoclinic HfO2 nanostructured thin films (HfO2-EPD) were prepared by the direct EPD of HfO2-NPs. The HfO2-NPs were prepared by a hydrothermal route and studied through the changing aging temperature, pH and reaction time parameters to produce nanocrystalline particles. Subsequently, based on the colloidal stability study, suspensions of the monoclinic HfO2-NPs with morphologies near spherical, spindle- and rice-like shapes were used to prepare HfO2-EPD thin films on conductive indium-tin oxide-coated glass substrates. Morphology, composition and crystallinity of the HfO2-NPs and thin films were investigated by powder and grazing incidence X-ray diffraction, scanning electron microscopy, transmission electron microscopy and UV-visible spectrophotometry. The EPD and DUV photolithography performances were explored and, in this study, it was clearly demonstrated that these two complementary methods are suitable, simple and effective processes to prepare controllable and tunable HfO2 nanostructures as with homogeneous, dense or micropatterned structures.

4.
Molecules ; 25(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182722

RESUMO

The pyrolysis (1000 °C) of a liquid poly(vinylmethyl-co-methyl)silazane modified by tetrakis(dimethylamido)titanium in flowing ammonia, nitrogen and argon followed by the annealing (1000-1800 °C) of as-pyrolyzed ceramic powders have been investigated in detail. We first provide a comprehensive mechanistic study of the polymer-to-ceramic conversion based on TG experiments coupled with in-situ mass spectrometry and ex-situ solid-state NMR and FTIR spectroscopies of both the chemically modified polymer and the pyrolysis intermediates. The pyrolysis leads to X-ray amorphous materials with chemical bonding and ceramic yields controlled by the nature of the atmosphere. Then, the structural evolution of the amorphous network of ammonia-, nitrogen- and argon-treated ceramics has been studied above 1000 °C under nitrogen and argon by X-ray diffraction and electron microscopy. HRTEM images coupled with XRD confirm the formation of nanocomposites after annealing at 1400 °C. Their unique nanostructural feature appears to be the result of both the molecular origin of the materials and the nature of the atmosphere used during pyrolysis. Samples are composed of an amorphous Si-based ceramic matrix in which TiNxCy nanocrystals (x + y = 1) are homogeneously formed "in situ" in the matrix during the process and evolve toward fully crystallized compounds as TiN/Si3N4, TiNxCy (x + y = 1)/SiC and TiC/SiC nanocomposites after annealing to 1800 °C as a function of the atmosphere.


Assuntos
Carbono/química , Nanocompostos/química , Nanotecnologia/métodos , Nitrogênio/química , Silício/química , Titânio/química , Amônia/química , Cerâmica , Técnicas de Química Sintética , Espectroscopia de Ressonância Magnética , Nanopartículas , Polímeros/química , Pós , Pirólise , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X , Raios X
5.
Inorg Chem ; 58(5): 3026-3032, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30767517

RESUMO

Perovskite ceramics have been extensively studied as host matrixes for radionuclide entrapment for nuclear waste disposal. As an expansion of these investigations, cerium, neodymium, and plutonium were incorporated into a perovskite phase, ACu3FeTi3O12 (A = Nd, Ce, Pu), using sol-gel methods under oxidizing and reducing atmospheres. The targeted materials contained varying levels of Ce3+ and Nd3+ on the A site, yielding potential compositions of Nd1- xCe xCu3FeTi3O12 ( x = 0, 0.1, 0.2, 0.3, 0.4, 0.8). However, interrogation of these materials shows that the maximum Ce3+ loading is achieved near x ≈ 0.2. A single composition with plutonium was targeted, Nd0.9Pu0.1Cu3FeTi3O12, in order to properly model more realistic loading levels for a repository-destined material. These compounds were characterized using powder X-ray diffraction with Rietveld refinements of the structures and by a variety of spectroscopic techniques. The data suggest that, in order to achieve Pu3+ substitution onto the A sites in the Nd0.9Pu0.1Cu3FeTi3O12, a reducing atmosphere must be employed. Otherwise, the redox activity of plutonium results in substitution onto multiple sites in the material as well as the formation of secondary phases such as TiO2.

6.
Inorg Chem ; 57(9): 4816-4819, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29658710

RESUMO

Two new isotypic d/f-heterometallic purely inorganic cationic materials, [Ag2M(Te2O5)2]SO4 (M = CeIV or ThIV), were synthesized using the metal oxides (MO2 and TeO2), silver nitrate, and sulfuric acid under mild hydrothermal conditions. The prepared materials were characterized via single-crystal X-ray diffraction, which revealed that the materials possess a 3D framework of corner-sharing Te2O52- units. The tellurite framework creates four unique pores, three of which are occupied by the MIV and AgI metal centers. The tellurite network, metal coordination, and total charge yield a cationic framework, which is charge-balanced by electrostatically bound sulfate anions residing in the largest of the four framework pores. These materials also possess AgI in a ligand-imposed linear geometry.

7.
J Am Chem Soc ; 140(5): 1674-1685, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29320850

RESUMO

A series of f-block chromates, CsM(CrO4)2 (M = La, Pr, Nd, Sm, Eu; Am), were prepared revealing notable differences between the AmIII derivatives and their lanthanide analogs. While all compounds form similar layered structures, the americium compound exhibits polymorphism and adopts both a structure isomorphous with the early lanthanides as well as one that possesses lower symmetry. Both polymorphs are dark red and possess band gaps that are smaller than the LnIII compounds. In order to probe the origin of these differences, the electronic structure of α-CsSm(CrO4)2, α-CsEu(CrO4)2, and α-CsAm(CrO4)2 were studied using both a molecular cluster approach featuring hybrid density functional theory and QTAIM analysis and by the periodic LDA+GA and LDA+DMFT methods. Notably, the covalent contributions to bonding by the f orbitals were found to be more than twice as large in the AmIII chromate than in the SmIII and EuIII compounds, and even larger in magnitude than the Am-5f spin-orbit splitting in this system. Our analysis indicates also that the Am-O covalency in α-CsAm(CrO4)2 is driven by the degeneracy of the 5f and 2p orbitals, and not by orbital overlap.

8.
Chemistry ; 23(4): 832-845, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27741364

RESUMO

Monolith-type titanium nitride/silicon nitride nanocomposites, denoted as TiN/Si3 N4 , have been prepared by a reaction of polysilazanes with a titanium amide precursor, warm pressing of the resultant polytitanosilazanes, and subsequent pyrolysis of the green bodies at 1400 °C. Initially, a series of polytitanosilazanes was synthesized and the role of the chemistry behind their synthesis was studied in detail by using solid-state NMR spectroscopy, elemental analysis, and molecular-weight measurements. The intimate relationship between the chemistry and the processability of these precursors is discussed. Polytitanosilazanes display the appropriate requirements for facile processing in solution and as a melt, but they must be treated with liquid ammonia to be adapted for solid-state processing, that is, warm-pressing, to design dense and mechanically stable structures after pyrolysis. We provide a comprehensive mechanistic study of the nanocomposite conversion based on solid-state NMR spectroscopy coupled with thermogravimetric experiments. HRTEM images coupled with XRD and Raman spectroscopy confirmed the unique nanostructural features of the nanocomposites, which appear to be a result of the molecular origin of the materials. The as-obtained samples are composed of an amorphous Si3 N4 matrix, in which TiN nanocrystals are homogeneously formed in situ in the matrix during the process. The hardness and Young moduli were measured and are discussed.

9.
Adv Mater ; 26(38): 6548-53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25100332

RESUMO

Bulk nanocomposites possessing very high hardness in which TiN nanocrystallites are homogeneously embedded in an amorphous Si3N4 matrix are produced from perhydropolysilazane and tetrakisdimethylaminotitanium. That is, a low-molecular-weight TiN molecule is mixed in controlled molar ratio with a polymeric Si3N4 precursor; further processing, including ammonolysis, warm pressing, and controlled nanocrystal growth, yields nanocomposites with the desired properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...