Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 169(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37134007

RESUMO

Vibrio cholerae is a pathogen that causes disease in millions of people every year by colonizing the small intestine and then secreting the potent cholera toxin. How the pathogen overcomes the colonization barrier created by the host's natural microbiota is, however, still not well understood. In this context, the type VI secretion system (T6SS) has gained considerable attention given its ability to mediate interbacterial killing. Interestingly, and in contrast to non-pandemic or environmental V. cholerae isolates, strains that are causing the ongoing cholera pandemic (7PET clade) are considered T6SS-silent under laboratory conditions. Since this idea was recently challenged, we performed a comparative in vitro study on T6SS activity using diverse strains or regulatory mutants. We show that modest T6SS activity is detectable in most of the tested strains under interbacterial competition conditions. The system's activity was also observed through immunodetection of the T6SS tube protein Hcp in culture supernatants, a phenotype that can be masked by the strains' haemagglutinin/protease. We further investigated the low T6SS activity within the bacterial populations by imaging 7PET V. cholerae at the single-cell level. The micrographs showed the production of the machinery in only a small fraction of cells within the population. This sporadic T6SS production was higher at 30 °C than at 37 °C and occurred independently of the known regulators TfoX and TfoY but was dependent on the VxrAB two-component system. Overall, our work provides new insight into the heterogeneity of T6SS production in populations of 7PET V. cholerae strains in vitro and provides a possible explanation of the system's low activity in bulk measurements.


Assuntos
Cólera , Sistemas de Secreção Tipo VI , Vibrio cholerae , Humanos , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Toxina da Cólera/metabolismo
2.
Microbiol Spectr ; : e0508522, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36951576

RESUMO

Streptococcus gallolyticus subsp. gallolyticus (SGG) is an opportunistic gut pathogen associated with colorectal cancer. We previously showed that colonization of the murine colon by SGG in tumoral conditions was strongly enhanced by the production of gallocin A, a two-peptide bacteriocin. Here, we aimed to characterize the mechanisms of its action and resistance. Using a genetic approach, we demonstrated that gallocin A is composed of two peptides, GllA1 and GllA2, which are inactive alone and act together to kill "target" bacteria. We showed that gallocin A can kill phylogenetically close relatives of the pathogen. Importantly, we demonstrated that gallocin A peptides can insert themselves into membranes and permeabilize lipid bilayer vesicles. Next, we showed that the third gene of the gallocin A operon, gip, is necessary and sufficient to confer immunity to gallocin A. Structural modeling of GllA1 and GllA2 mature peptides suggested that both peptides form alpha-helical hairpins stabilized by intramolecular disulfide bridges. The presence of a disulfide bond in GllA1 and GllA2 was confirmed experimentally. Addition of disulfide-reducing agents abrogated gallocin A activity. Likewise, deletion of a gene encoding a surface protein with a thioredoxin-like domain impaired the ability of gallocin A to kill Enterococcus faecalis. Structural modeling of GIP revealed a hairpin-like structure strongly resembling those of the GllA1 and GllA2 mature peptides, suggesting a mechanism of immunity by competition with GllA1/2. Finally, identification of other class IIb bacteriocins exhibiting a similar alpha-helical hairpin fold stabilized with an intramolecular disulfide bridge suggests the existence of a new subclass of class IIb bacteriocins. IMPORTANCE Streptococcus gallolyticus subsp. gallolyticus (SGG), previously named Streptococcus bovis biotype I, is an opportunistic pathogen responsible for invasive infections (septicemia, endocarditis) in elderly people and is often associated with colon tumors. SGG is one of the first bacteria to be associated with the occurrence of colorectal cancer in humans. Previously, we showed that tumor-associated conditions in the colon provide SGG with an ideal environment to proliferate at the expense of phylogenetically and metabolically closely related commensal bacteria such as enterococci (1). SGG takes advantage of CRC-associated conditions to outcompete and substitute commensal members of the gut microbiota using a specific bacteriocin named gallocin, recently renamed gallocin A following the discovery of gallocin D in a peculiar SGG isolate. Here, we showed that gallocin A is a two-peptide bacteriocin and that both GllA1 and GllA2 peptides are required for antimicrobial activity. Gallocin A was shown to permeabilize bacterial membranes and kill phylogenetically closely related bacteria such as most streptococci, lactococci, and enterococci, probably through membrane pore formation. GllA1 and GllA2 secreted peptides are unusually long (42 and 60 amino acids long) and have very few charged amino acids compared to well-known class IIb bacteriocins. In silico modeling revealed that both GllA1 and GllA2 exhibit a similar hairpin-like conformation stabilized by an intramolecular disulfide bond. We also showed that the GIP immunity peptide forms a hairpin-like structure similar to GllA1/GllA2. Thus, we hypothesize that GIP blocks the formation of the GllA1/GllA2 complex by interacting with GllA1 or GllA2. Gallocin A may constitute the first class IIb bacteriocin which displays disulfide bridges important for its structure and activity and might be the founding member of a subtype of class IIb bacteriocins.

3.
ISME J ; 16(7): 1868-1872, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35411099

RESUMO

Vibrio cholerae is a well-studied human pathogen that is also a common inhabitant of marine habitats. In both environments, the bacterium is subject to interbacterial competition. A molecular nanomachine that is often involved in such competitive behavior is the type VI secretion system (T6SS). Interestingly and in contrast to non-pandemic or environmental isolates, the T6SS of the O1 El Tor clade of V. cholerae, which is responsible for the ongoing 7th cholera pandemic, is largely silent under standard laboratory culture conditions. Instead, these strains induce their full T6SS capacity only under specific conditions such as growth on chitinous surfaces (signaled through TfoX and QstR) or when the cells encounter low intracellular c-di-GMP levels (TfoY-driven). In this study, we identified a single nucleotide polymorphism (SNP) within an intergenic region of the major T6SS gene cluster of V. cholerae that determines the T6SS status of the cell. We show that SNP conversion is sufficient to induce T6SS production in numerous pandemic strains, while the converse approach renders non-pandemic/environmental V. cholerae strains T6SS-silent. We further demonstrate that SNP-dependent T6SS production occurs independently of the known T6SS regulators TfoX, QstR, and TfoY. Finally, we identify a putative promoter region adjacent to the identified SNP that is required for all forms of T6SS regulation in V. cholerae.


Assuntos
Sistemas de Secreção Tipo VI , Vibrio cholerae , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cólera/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Polimorfismo de Nucleotídeo Único , Sistemas de Secreção Tipo VI/genética , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/genética
4.
mBio ; 12(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402539

RESUMO

Bacteriocins are natural antimicrobial peptides produced by bacteria to kill closely related competitors. The opportunistic pathogen Streptococcus gallolyticus subsp. gallolyticus was recently shown to outcompete commensal enterococci of the murine microbiota under tumoral conditions thanks to the production of a two-peptide bacteriocin named gallocin. Here, we identified four genes involved in the regulatory control of gallocin in S. gallolyticus subsp. gallolyticus UCN34 that encode a histidine kinase/response regulator two-component system (BlpH/BlpR), a secreted peptide (GSP [gallocin-stimulating peptide]), and a putative regulator of unknown function (BlpS). While BlpR is a typical 243-amino-acid (aa) response regulator possessing a phospho-receiver domain and a LytTR DNA-binding domain, BlpS is a 108-aa protein containing only a LytTR domain. Our results showed that the secreted peptide GSP activates the dedicated two-component system BlpH/BlpR to induce gallocin transcription. A genome-wide transcriptome analysis indicates that this regulatory system (GSP-BlpH/BlpR) is specific for bacteriocin production. Importantly, as opposed to BlpR, BlpS was shown to repress gallocin gene transcription. A conserved operator DNA sequence of 30 bp was found in all promoter regions regulated by BlpR and BlpS. Electrophoretic mobility shift assays (EMSA) and footprint assays showed direct and specific binding of BlpS and BlpR to various regulated promoter regions in a dose-dependent manner on this conserved sequence. Gallocin expression appears to be tightly controlled in S. gallolyticus subsp. gallolyticus by quorum sensing and antagonistic activity of 2 LytTR-containing proteins. Competition experiments in gut microbiota medium and 5% CO2 to mimic intestinal conditions demonstrate that gallocin is functional under these in vivo-like conditions.IMPORTANCEStreptococcus gallolyticus subsp. gallolyticus, formerly known as Streptococcus bovis biotype I, is an opportunistic pathogen causing septicemia and endocarditis in the elderly often associated with asymptomatic colonic neoplasia. Recent studies indicate that S. gallolyticus subsp. gallolyticus is both a driver and a passenger of colorectal cancer. We previously showed that S. gallolyticus subsp. gallolyticus produces a bacteriocin, termed gallocin, enabling colonization of the colon under tumoral conditions by outcompeting commensal members of the murine microbiota such as Enterococcus faecalis Here, we identified and extensively characterized a four-component system that regulates gallocin production. Gallocin gene transcription is activated by a secreted peptide pheromone (GSP) and a two-component signal transduction system composed of a transmembrane histidine kinase receptor (BlpH) and a cytosolic response regulator (BlpR). Finally, a DNA-binding protein (BlpS) was found to repress gallocin genes transcription, likely by antagonizing BlpR. Understanding gallocin regulation is crucial to prevent S. gallolyticus subsp. gallolyticus colon colonization under tumoral conditions.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriocinas/genética , Regulação Bacteriana da Expressão Gênica , Streptococcus gallolyticus/genética , Streptococcus gallolyticus/metabolismo , Proteínas de Ligação a DNA/metabolismo , Microbioma Gastrointestinal , Perfilação da Expressão Gênica , Genes Bacterianos/genética , Genoma Bacteriano , Histidina Quinase/genética , Histidina Quinase/metabolismo , Percepção de Quorum , Infecções Estreptocócicas/microbiologia , Transcriptoma
5.
mBio ; 12(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402540

RESUMO

Streptococcus gallolyticus subsp. gallolyticus is an emerging opportunistic pathogen responsible for septicemia and endocarditis in the elderly. Invasive infections by S. gallolyticus subsp. gallolyticus are strongly linked to the occurrence of colorectal cancer (CRC). It was previously shown that increased secondary bile salts under CRC conditions enhance the bactericidal activity of gallocin, a bacteriocin produced by S. gallolyticus subsp. gallolyticus, enabling it to colonize the mouse colon by outcompeting resident enterococci (L. Aymeric, F. Donnadieu, C. Mulet, L. du Merle, et al., Proc Natl Acad Sci U S A 115:E283-E291, 2018, https://doi.org/10.1073/pnas.1715112115). In a separate study, we showed that S. gallolyticus subsp. gallolyticus produces and secretes a 21-mer peptide that activates bacteriocin production (A. Proutière, L. du Merle, B. Périchon, H. Varet, et al., mBio 11:e03187-20, 2020, https://doi.org/10.1128/mBio.03187-20). This peptide was named CSP because of its sequence similarity with competence-stimulating peptides found in other streptococci. Here, we demonstrate that CSP is a bona fide quorum sensing peptide involved in activation of gallocin gene transcription. We therefore refer to CSP as GSP (gallocin-stimulating peptide). GSP displays some unique features, since its N-terminal amino acid lies three residues after the double glycine leader sequence. Here, we set out to investigate the processing and export pathway that leads to mature GSP. Heterologous expression in Lactococcus lactis of the genes encoding GSP and the BlpAB transporter is sufficient to produce the 21-mer form of GSP in the supernatant, indicating that S. gallolyticus subsp. gallolyticus BlpAB displays an atypical cleavage site. We also conducted the first comprehensive structure-activity relationship (SAR) analysis of S. gallolyticus subsp. gallolyticus GSP to identify its key structural features and found that unlike many other similar streptococci signaling peptides (such as CSPs), nearly half of the mature GSP sequence can be removed (residues 1 to 9) without significantly impacting the peptide activity.IMPORTANCEStreptococcus gallolyticus subsp. gallolyticus is an opportunistic pathogen associated with colorectal cancer (CRC) and endocarditis. S. gallolyticus subsp. gallolyticus utilizes quorum sensing (QS) to regulate the production of a bacteriocin (gallocin) and gain a selective advantage in colonizing the colon. In this article, we report (i) the first structure-activity relationship study of the S. gallolyticus subsp. gallolyticus QS pheromone that regulates gallocin production, (ii) evidence that the active QS pheromone is processed to its mature form by a unique ABC transporter and not processed by an extracellular protease, and (iii) supporting evidence of interspecies interactions between streptococcal pheromones. Our results revealed the minimal pheromone scaffold needed for gallocin activation and uncovered unique interactions between two streptococcal QS signals that warrant further study.


Assuntos
Bacteriocinas/metabolismo , Secreções Corporais/metabolismo , Peptídeos/metabolismo , Percepção de Quorum/fisiologia , Streptococcus gallolyticus/metabolismo , Transportadores de Cassetes de Ligação de ATP , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriocinas/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo , Peptídeo Hidrolases/metabolismo , Feromônios/metabolismo , Transdução de Sinais , Streptococcus gallolyticus/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...