Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1188672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404293

RESUMO

Microglia are the primary immunocompetent cells that protect the brain from environmental stressors, but can also be driven to release pro-inflammatory cytokines and induce a cytotoxic environment. Brain-derived neurotrophic factor (BDNF) is important for the regulation of plasticity, synapse formation, and general neuronal health. Yet, little is known about how BDNF impacts microglial activity. We hypothesized that BDNF would have a direct modulatory effect on primary cortical (Postnatal Day 1-3: P1-3) microglia and (Embryonic Day 16: E16) neuronal cultures in the context of a bacterial endotoxin. To this end, we found that a BDNF treatment following LPS-induced inflammation had a marked anti-inflammatory effect, reversing the release of both IL-6 and TNF-α in cortical primary microglia. This modulatory effect was transferrable to cortical primary neurons, such that LPS-activated microglial media was able produce an inflammatory effect when added to a separate neuronal culture, and again, BDNF priming attenuated this effect. BDNF also reversed the overall cytotoxic impact of LPS exposure in microglia. We speculate that BDNF can directly play a role in regulating microglia state and hence, influence microglia-neuron interactions.

2.
J Cell Physiol ; 237(1): 1013-1032, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543438

RESUMO

We report a novel in vitro classification system that tracks microglial activation state and their potential neurotoxicity. Mixed live-cell imaging was used to characterize transition through distinct morphological phenotypes, production of reactive oxygen species (ROS), formation of reactive microglial aggregates, and subsequent cytokine production. Transwell cultures were used to determine microglial migration (control and lipopolysaccharide (LPS) treated) to glutamate pre-stressed or healthy neurons. This two-hit paradigm was developed to model the vast evidence that neurodegenerative conditions, like Parkinson's disease (PD), may stem from the collective impact of multiple environmental stressors. We found that healthy neurons were resistant to microglial-mediated inflammation, whereas glutamate pre-stressed neurons were highly susceptible and in fact, appeared to recruit microglia. The LPS treated microglia progressed through distinct morphological states and expressed high levels of ROS and formed large cellular aggregates. Recent evidence implicates leucine-rich repeat kinase 2 (LRRK2) as an important player in the microglial inflammatory state, as well as in the genesis of PD. We found that inhibition of the LRRK2 signaling pathway using the kinase inhibitor cis-2,6-dimethyl-4-(6-(5-(1-methylcyclopropoxy)-1H-indazol-3-yl)pyrimidin-4-yl)morpholine (MLi2) or inhibition of the actin regulatory protein, Wiskott-Aldrich syndrome family Verprolin-homologous Protein-2 (WAVE2), stunted microglial activation and prevented neurotoxicity. Furthermore, inhibition of LRRK2 kinase activity reduced pro-inflammatory chemokines including MIP-2, CRG-2, and RANTES. These data together support the notion that LRRK2 and WAVE2 are important mediators of cytokine production and cytoskeletal rearrangement necessary for microglial-induced neurotoxicity. Furthermore, our model demonstrated unique microglial phenotypic changes that might be mechanistically important for better understanding neuron-microglial crosstalk.


Assuntos
Síndromes Neurotóxicas , Doença de Parkinson , Quimiocinas/metabolismo , Glutamatos/genética , Glutamatos/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo
3.
Neurosci Biobehav Rev ; 131: 135-163, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34537262

RESUMO

Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Microglia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Microglia/metabolismo , Plasticidade Neuronal , Fenótipo , Sinapses
4.
Mol Neurobiol ; 57(3): 1418-1431, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31754998

RESUMO

Parkinson's disease is a neurodegenerative disease characterized by a loss of dopaminergic substantia nigra neurons and depletion of dopamine. To date, current therapeutic approaches focus on managing motor symptoms and trying to slow neurodegeneration, with minimal capacity to promote neurorecovery. mGluR5 plays a key role in neuroplasticity, and altered mGluR5 signaling contributes to synucleinopathy and dyskinesia in patients with Parkinson's disease. Here, we tested whether the mGluR5-negative allosteric modulator, (2-chloro-4-[2[2,5-dimethyl-1-[4-(trifluoromethoxy) phenyl] imidazol-4-yl] ethynyl] pyridine (CTEP), would be effective in improving motor deficits and promoting neural recovery in a 6-hydroxydopamine (6-OHDA) mouse model. Lesions were induced by 6-ODHA striatal infusion, and 30 days later treatment with CTEP (2 mg/kg) or vehicle commenced for either 1 or 12 weeks. Animals were subjected to behavioral, pathological, and molecular analyses. We also assessed how long the effects of CTEP persisted, and finally, using rapamycin, determined the role of the mTOR pathway. CTEP treatment induced a duration-dependent improvement in apomorphine-induced rotation and performance on rotarod in lesioned mice. Moreover, CTEP promoted a recovery of striatal tyrosine hydroxylase-positive fibers and normalized FosB levels in lesioned mice. The beneficial effects of CTEP were paralleled by an activation of mammalian target of rapamycin (mTOR) pathway and elevated brain-derived neurotrophic factor levels in the striatum of lesioned mice. The mTOR inhibitor, rapamycin (sirolimus), abolished CTEP-induced neurorecovery and rescue of motor deficits. Our findings indicate that mTOR pathway is a useful target to promote recovery and that mGluR5 allosteric regulators may potentially be repurposed to selectively target this pathway to enhance neuroplasticity in patients with Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Apomorfina/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Doenças Neurodegenerativas/metabolismo , Oxidopamina/farmacologia
5.
Neurobiol Stress ; 11: 100179, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31304199

RESUMO

The impact of psychological stressors on the progression of motor and non-motor disturbances observed in Parkinson's disease (PD) has received little attention. Given that PD likely results from many different environmental "hits", we were interested in whether a chronic unpredictable stressor regimen would act additively or possibly even synergistically to augment the impact of the toxicant, paraquat, which has previously been linked to PD. Our findings support the contention that paraquat itself acted as a systemic stressor, with the pesticide increasing plasma corticosterone, as well as altering glucocorticoid receptor (GR) expression in the hippocampus. Furthermore, stressed mice that also received paraquat displayed synergistic motor coordination impairment on a rotarod test and augmented signs of anhedonia (sucrose preference test). The individual stressor and paraquat treatments also caused a range of non-motor (e.g. open field, Y and plus mazes) deficits, but there were no signs of an interaction (neither additive nor synergistic) between the insults. Similarly, paraquat caused the expected loss of substantia nigra dopamine neurons and microglial activation, but this effect was not further influenced by the chronic stressor. Taken together, these results indicate that paraquat has many effects comparable to that of a more traditional stressor and that at least some behavioral measures (i.e. sucrose preference and rotarod) are augmented by the combined pesticide and stress treatments. Thus, although psychological stressors might not necessarily increase the neurodegenerative effects of the toxicant exposure, they may promote co-morbid behaviors pathology.

6.
Front Aging Neurosci ; 9: 222, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769783

RESUMO

Little is known of the age-dependent and long-term consequences of low exposure levels of the herbicide and dopaminergic toxicant, paraquat. Thus, we assessed the dose-dependent effects of paraquat using a typical short-term (3 week) exposure procedure, followed by an assessment of the effects of chronic (16 weeks) exposure to a very low dose (1/10th of what previously induced dopaminergic neuronal damage). Short term paraquat treatment dose-dependently induced deficits in locomotion, sucrose preference and Y-maze performance. Chronic low dose paraquat treatment had a very different pattern of effects that were also dependent upon the age of the animal: in direct contrast to the short-term effects, chronic low dose paraquat increased sucrose consumption and reduced forced swim test (FST) immobility. Yet these effects were age-dependent, only emerging in mice older than 13 months. Likewise, Y-maze spontaneous alternations and home cage activity were dramatically altered as a function of age and paraquat chronicity. In both the short and long-term exposure studies, increased corticosterone and altered hippocampal glucocorticoid receptor (GR) levels were induced by paraquat, but surprisingly these effects were blunted in the older mice. Thus, paraquat clearly acts as a systemic stressor in terms of corticoid signaling and behavioral outcomes, but that paradoxical effects may occur with: (a) repeated exposure at; (b) very low doses; and (c) older age. Collectively, these data raise the possibility that repeated "hits" with low doses of paraquat in combination with aging processes might have promoted compensatory outcomes.

7.
Neuropharmacology ; 112(Pt A): 210-220, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27106168

RESUMO

Considerable recent attention has focused on the rapid antidepressant effects observed in treatment resistant patients produced by the NMDA receptor antagonist, ketamine. Surprisingly, the effects of ketamine in the context of stressor exposure, as well as the consequences of its chronic use are unclear. Thus, we assessed the impact of acute and repeated ketamine treatment together with acute [restraint or lipopolysaccharide (LPS)] or chronic (unpredictable different psychogenic challenges) stressor exposure. Importantly, acute ketamine treatment did provoke an antidepressant-like effect in a forced swim test (FST) and this effect lasted for 8 days following repeated exposure to the drug. Although acute restraint and LPS individually provoked the expected elevation of plasma corticosterone and brain-region specific monoamine variations, ketamine had no influence on corticosterone and had, at best, sparse effects on the monoamine changes. Similarly, ketamine did not appreciably influence the stressor induced neurochemical and sucrose preference alterations, it did however, dose-dependently reverse the LPS induced elevation of the pro-inflammatory cytokines, interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α). Likewise, repeated ketamine administration increased adult hippocampal neurogenesis. These data indicate that repeated ketamine administration had greater behavioral consequences than acute treatment and that the drug might be imparting antidepressant effects through its effects on neuroplasticity and inflammatory processes rather than the typical neurochemical/hormonal factors affected by stressors. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.


Assuntos
Antidepressivos/administração & dosagem , Monoaminas Biogênicas/metabolismo , Citocinas/metabolismo , Encefalite/metabolismo , Hipocampo/efeitos dos fármacos , Ketamina/administração & dosagem , Neurogênese/efeitos dos fármacos , Estresse Psicológico/metabolismo , Animais , Corticosterona/sangue , Encefalite/induzido quimicamente , Encefalite/complicações , Hipocampo/metabolismo , Hipocampo/fisiologia , Comportamento de Doença , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Masculino , Camundongos , Norepinefrina/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Restrição Física , Serotonina/metabolismo , Estresse Psicológico/induzido quimicamente , Estresse Psicológico/complicações , Fator de Necrose Tumoral alfa/metabolismo
8.
Front Aging Neurosci ; 7: 126, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26191001

RESUMO

Parkinson's disease (PD) is a devastating age related neurodegenerative disease that is believed to have a lengthy prodromal state. It is critical to find methods to harness compensatory recovery processes in order to slow or prevent the eventual progression of clinical symptoms. The current perspective paper argues that immune system signaling molecules represent such a promising therapeutic approach. Two cytokines of interest are granulocyte macrophage-colony stimulating factor (GM-CSF) and erythropoietin (EPO). These hematopoietic cytokines have been protective in models of stroke, neuronal injury, and more recently PD. It is our belief that these trophic cytokines can be used not only for cell protection but also regeneration. However, success is likely dependent on early intervention. This paper will outline our perspective on the development of novel trophic recovery treatments for PD. In particular, we present new data from our lab suggesting that EPO and GM-CSF can foster neural re-innervation in a "mild" or partial lesion PD model that could be envisioned as reflecting the early stages of the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA