RESUMO
Hybrid-based drugs linked through a transition metal constitute an emerging concept for Plasmodium intervention. To advance the drug design concept and enhance the therapeutic potential of this class of drugs, we developed a novel hybrid composed of quinolinic ligands amodiaquine (AQ) and primaquine (PQ) linked by gold(I), named [AuAQPQ]PF6. This compound demonstrated potent and efficacious antiplasmodial activity against multiple stages of the Plasmodium life cycle. The source of this activity was thoroughly investigated by comparing parasite susceptibility to the hybrid's components, the annotation of structure-activity relationships and studies of the mechanism of action. The activity of [AuAQPQ]PF6 for the parasite's asexual blood stages was influenced by the presence of AQ, while its activity against gametocytes and pre-erythrocytic parasites was influenced by both quinolinic components. Moreover, the coordination of ligands to gold(I) was found to be essential for the enhancement of potency, as suggested by the observation that a combination of quinolinic ligands does not reproduce the antimalarial potency and efficacy as observed for the metallic hybrid. Our results indicate that this gold(I) hybrid compound presents a dual mechanism of action by inhibiting the beta-hematin formation and enzymatic activity of thioredoxin reductases. Overall, our findings support the potential of transition metals as a dual chemical linker and an antiplasmodial payload for the development of hybrid-based drugs.
RESUMO
A recently developed artemisinin-quinoline hybrid, named 163A, has been shown to display potent activity against the asexual blood stage of Plasmodium, the malaria parasite. In this study, we determined its in vitro cytotoxicity to mammalian cells, its potency to suppress P. berghei hepatic infection and to decrease the viability of P. falciparum gametocytes, in addition to determining whether the drug exhibits efficacy of a P. berghei infection in mice. This hybrid compound has a low level of cytotoxicity to mammalian cells and, conversely, a high level of selectivity. It is potent in the prevention of hepatic stage development as well as in killing gametocytes, denoting a potential blockage of malaria transmission. The hybrid presents a potent inhibitory activity for beta-hematin crystal formation, in which subsequent assays revealed that its endoperoxide component undergoes bioactivation by reductive reaction with ferrous heme towards the formation of heme-drug adducts; in parallel, the 7-chloroquinoline component has binding affinity for ferric hemin. Both structural components of the hybrid co-operate to enhance the inhibition of beta-hematin, and this bitopic ligand property is essential for arresting the growth of asexual blood parasites. We demonstrated the in vivo efficacy of the hybrid as an erythrocytic schizonticide agent in comparison to a chloroquine/artemisinin combination therapy. Collectively, the findings suggest that the bitopic property of the hybrid is highly operative on heme detoxification suppression, and this provides compelling evidence for explaining the action of the hybrid on the asexual blood stage. For sporozoite and gametocyte stages, the hybrid conserves the potency typically observed for endoperoxide drugs, and this is possibly achieved due to the redox chemistry of endoperoxide components with ferrous heme.
RESUMO
Antimalarial drugs with novel modes of action and wide therapeutic potential are needed to pave the way for malaria eradication. Violacein is a natural compound known for its biological activity against cancer cells and several pathogens, including the malaria parasite, Plasmodium falciparum (Pf). Herein, using chemical genomic profiling (CGP), we found that violacein affects protein homeostasis. Mechanistically, violacein binds Pf chaperones, PfHsp90 and PfHsp70-1, compromising the latter's ATPase and chaperone activities. Additionally, violacein-treated parasites exhibited increased protein unfolding and proteasomal degradation. The uncoupling of the parasite stress response reflects the multistage growth inhibitory effect promoted by violacein. Despite evidence of proteotoxic stress, violacein did not inhibit global protein synthesis via UPR activation-a process that is highly dependent on chaperones, in agreement with the notion of a violacein-induced proteostasis collapse. Our data highlight the importance of a functioning chaperone-proteasome system for parasite development and differentiation. Thus, a violacein-like small molecule might provide a good scaffold for development of a novel probe for examining the molecular chaperone network and/or antiplasmodial drug design.
Assuntos
Antimaláricos , Antimaláricos/farmacologia , Indóis/farmacologia , Chaperonas Moleculares , Plasmodium falciparumRESUMO
Plasmodium parasites kill 435 000 people around the world every year due to unavailable vaccines, a limited arsenal of antimalarial drugs, delayed treatment, and the reduced clinical effectiveness of current practices caused by drug resistance. Therefore, there is an urgent need to discover and develop new antiplasmodial candidates. In this work, we present a novel strategy to develop a multitarget metallic hybrid antimalarial agent with possible dual efficacy in both sexual and asexual erythrocytic stages. A hybrid of antimalarial drugs (chloroquine and primaquine) linked by gold(I) was synthesized and characterized by spectroscopic and analytical techniques. The CQPQ-gold(I) hybrid molecule affects essential parasite targets, it inhibits ß-hematin formation and interacts moderately with the DNA minor groove. Its interaction with PfTrxR was also examined in computational modeling studies. The CQPQ-gold(I) hybrid displayed an excellent inâ vitro antimalarial activity against the blood-stage of Plasmodium falciparum and liver-stage of Plasmodium berghei and efficacy inâ vivo against P. berghei, thereby demonstrating its multiple-stage antiplasmodial activity. This metallic hybrid is a promising chemotherapeutic agent that could act in the treatment, prevention, and transmission of malaria.
Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Ouro/farmacologia , Primaquina/farmacologia , Antimaláricos/química , Cloroquina/química , Relação Dose-Resposta a Droga , Ouro/química , Humanos , Malária/tratamento farmacológico , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Primaquina/química , Relação Estrutura-AtividadeRESUMO
Chloroquine is an antimalarial agent with strong activity against the blood stage of Plasmodium infection, but with low activity against the parasite's liver stage. In addition, the resistance to chloroquine limits its clinical use. The discovery of new molecules possessing multistage activity and overcoming drug resistance is needed. One possible strategy to achieve this lies in combining antimalarial quinolones with the pharmacological effects of transition metals. We investigated the antimalarial activity of four platinum(ii) complexes composed of chloroquine and phosphine ligands, denoted as WV-90, WV-92, WV-93 and WV-94. In comparison with chloroquine, the complexes were less potent against the chloroquine-sensitive 3D7 strain but they were as active as chloroquine in inhibiting the chloroquine-resistant W2 strain of P. falciparum. Regarding selectivity, the complexes WV-90 and WV-93 displayed higher indexes. Unlike chloroquine, the complexes act as irreversible parasiticidal agents against trophozoites and the WV-93 complex displayed activity against the hepatic stage of P. berghei. The in vivo suppression activity against P. berghei in the Peters 4 day test displayed by the complexes was similar to that of chloroquine. However, the efficacy in an established P. berghei infection in the Thompson test was superior for the WV-93 complex compared to chloroquine. The complexes' antimalarial mechanism of action is initiated by inhibiting the hemozoin formation. While chloroquine efficiently inhibits hemozoin, parasites treated with the platinum complexes display residual hemozoin crystals. This is explained since the interaction of the platinum complexes with ferriprotoporphyrin is weaker than that of chloroquine. However, the complexes caused a loss of mitochondrial integrity and subsequent reduction in mitochondrial activity, and their effects on mitochondria were more pronounced than those in the chloroquine-treated parasites. The dual effect of the platinum complexes may explain their activity against the hemozoin-lacking parasites (hepatic stage), where chloroquine has no activity. Our findings indicate that the platinum(ii)-chloroquine complexes are multifunctional antimalarial compounds and reinforce the importance of metal complexes in antimalarial drug discovery.
Assuntos
Antimaláricos/uso terapêutico , Cloroquina/uso terapêutico , Complexos de Coordenação/uso terapêutico , Malária Falciparum/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Platina/uso terapêutico , Animais , Antimaláricos/química , Linhagem Celular , Linhagem Celular Tumoral , Cloroquina/química , Complexos de Coordenação/química , Cães , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Hemeproteínas/antagonistas & inibidores , Hemeproteínas/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/parasitologia , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Camundongos , Mitocôndrias/metabolismo , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/fisiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Plasmodium falciparum/ultraestrutura , Platina/química , Análise de SobrevidaRESUMO
We report the pharmacological activity of organoruthenium complexes containing chloroquine (CQ) as a chelating ligand. The complexes displayed intraerythrocytic activity against CQ-sensitive 3D7 and CQ-resistant W2 strains of Plasmodium falciparum, with potency and selectivity indexes similar to those of CQ. Complexes displayed activity against all intraerythrocytic stages, but moderate activity against Plasmodium berghei liver stages. However, unlike CQ, organoruthenium complexes impaired gametocyte viability and exhibited fast parasiticidal activity against trophozoites for P. falciparum. This functional property results from the ability of complexes to quickly induce oxidative stress. The parasitaemia of P. berghei-infected mice was reduced by treatment with the complex. Our findings demonstrated that using chloroquine for the synthesis of organoruthenium complexes retains potency and selectivity while leading to an increase in the spectrum of action and parasite killing rate relative to CQ.