Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284948

RESUMO

The malaria vaccination landscape has seen significant advancements with the recent endorsement of RTS,S/AS01 and R21/Matrix-M vaccines, which target the pre-erythrocytic stages of Plasmodium falciparum (Pf) infection. However, several challenges remain to be addressed, including the incomplete protection afforded by these vaccines, their dependence on a single Pf antigen, and the fact that they were not designed to protect against P. vivax (Pv) malaria. Injectable formulations of whole-sporozoite (WSpz) malaria vaccines offer a promising alternative to existing subunit vaccines, with recent developments including genetically engineered parasites and optimized administration regimens. Clinical evaluations demonstrate varying efficacy, influenced by factors, such as immune status, prior exposure to malaria, and age. Despite significant progress, a few hurdles persist in vaccine production, deployment, and efficacy in malaria-endemic regions, particularly in children. Concurrently, transgenic parasites expressing Pv antigens emerge as potential solutions for PvWSpz vaccine development. Ongoing clinical studies and advancements in vaccine technology, including the recently described PfSPZ-LARC2 candidate, signify a hopeful future for WSpz malaria vaccines, which hold great promise in the global fight against malaria.

2.
ACS Med Chem Lett ; 15(8): 1386-1395, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39140064

RESUMO

Malaria presents a significant challenge to global public health, with around 247 million cases estimated to occur annually worldwide. The growing resistance of Plasmodium parasites to existing therapies underscores the urgent need for new and innovative antimalarial drugs. This study leveraged artificial intelligence (AI) to tackle this complex challenge. We developed multistage Machine Learning Quantitative Structure-Activity Relationship (ML-QSAR) models to effectively analyze large datasets and predict the efficacy of chemical compounds against multiple life cycle stages of Plasmodium parasites. We then selected 16 compounds for experimental evaluation, six of which showed at least dual-stage inhibitory activity and one inhibited all life cycle stages tested. Moreover, explainable AI (XAI) analysis provided insights into critical molecular features influencing model predictions, thereby enhancing our understanding of compound interactions. This study not only empowers the development of advanced predictive AI models but also accelerates the identification and optimization of potential antiplasmodial compounds.

3.
RSC Med Chem ; 15(8): 2657-2662, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39149112

RESUMO

Malaria is one of the "big three" global infectious diseases, having caused above two hundred million cases and over half a million deaths in 2020. The continuous demand for new treatment options prioritizes the cost-effective development of new chemical entities with multi-stage antiplasmodial activity, for higher efficacy and lower propensity to elicit drug-resistant parasite strains. Following up on our long-term research towards the rescue of classical antimalarial aminoquinolines like chloroquine and primaquine, we have developed new organic salts by acid-base pairing of those drugs with natural bile acids. These antimalarial drug-derived bile salts were screened in vitro against the hepatic, blood and gametocyte stages of Plasmodium parasites, unveiling chloroquine bile salts as unprecedented triple-stage antiplasmodial hits. These findings pave a new pathway for drug rescuing, even beyond anti-malarial and other anti-infective drugs.

4.
Dalton Trans ; 53(28): 11903-11913, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953883

RESUMO

Monoanionic gold bis(dithiolene) complexes were recently shown to display activity against ovarian cancer cells, Gram-positive bacteria, Candida strains and the rodent malaria parasite, P. berghei. To date, only monoanionic gold(III) bis(dithiolene) complexes with a thiazoline backbone substituted with small alkyl chains have been evaluated for biomedical applications. We now analyzed the influence of the length and the hydrophobicity vs. hydrophilicity of these complexes' alkyl chain on their anticancer and antiplasmodial properties. Isomer analogues of these monoanionic gold(III) bis(dithiolene) complexes, this time with a thiazole backbone, were also investigated in order to assess the influence of the nature of the heterocyclic ligand on their overall chemical and biological properties. In this report we present the total synthesis of four novel monoanionic gold(III) bis(dithiolene) complexes with a long alkyl chain and a polyoxygenated (PEG) chain aiming to improve their solubility and biological properties. Our results showed that the complexes with a PEG chain showed promising anticancer and antiplasmodial activities beside improved solubility, a key parameter in drug discovery and development.


Assuntos
Antimaláricos , Antineoplásicos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Ouro/química , Ouro/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Plasmodium falciparum/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Compostos Organoáuricos/farmacologia , Compostos Organoáuricos/química , Compostos Organoáuricos/síntese química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Proliferação de Células/efeitos dos fármacos , Animais
5.
Bioorg Med Chem Lett ; 111: 129894, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39043264

RESUMO

Drug repurposing and rescuing have been widely explored as cost-effective approaches to expand the portfolio of chemotherapeutic agents. Based on the reported antitumor properties of both trans-cinnamic acids and quinacrine, an antimalarial aminoacridine, we explored the antiproliferative properties of two series of N-cinnamoyl-aminoacridines recently identified as multi-stage antiplasmodial leads. The compounds were evaluated in vitro against three cancer cell lines (MKN-28, Huh-7, and HepG2), and human primary dermal fibroblasts. One of the series displayed highly selective antiproliferative activity in the micromolar range against the three cancer cell lines tested, without any toxicity to non-carcinogenic cells.


Assuntos
Antimaláricos , Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Estrutura Molecular , Aminoacridinas/farmacologia , Aminoacridinas/química , Aminoacridinas/síntese química , Relação Dose-Resposta a Droga , Cinamatos/farmacologia , Cinamatos/química , Cinamatos/síntese química
6.
Bioorg Med Chem ; 105: 117734, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677112

RESUMO

Although cancer and malaria are not etiologically nor pathophysiologically connected, due to their similarities successful repurposing of antimalarial drugs for cancer and vice-versa is known and used in clinical settings and drug research and discovery. With the growing resistance of cancer cells and Plasmodium to the known drugs, there is an urgent need to discover new chemotypes and enrich anticancer and antimalarial drug portfolios. In this paper, we present the design and synthesis of harmiprims, hybrids composed of harmine, an alkaloid of the ß-carboline type bearing anticancer and antiplasmodial activities, and primaquine, 8-aminoquinoline antimalarial drug with low antiproliferative activity, covalently bound via triazole or urea. Evaluation of their antiproliferative activities in vitro revealed that N-9 substituted triazole-type harmiprime was the most selective compound against MCF-7, whereas C1-substituted ureido-type hybrid was the most active compound against all cell lines tested. On the other hand, dimeric harmiprime was not toxic at all. Although spectrophotometric studies and thermal denaturation experiments indicated binding of harmiprims to the ds-DNA groove, cell localization showed that harmiprims do not enter cell nucleus nor mitochondria, thus no inhibition of DNA-related processes can be expected. Cell cycle analysis revealed that C1-substituted ureido-type hybrid induced a G1 arrest and reduced the number of cells in the S phase after 24 h, persisting at 48 h, albeit with a less significant increase in G1, possibly due to adaptive cellular responses. In contrast, N-9 substituted triazole-type harmiprime exhibited less pronounced effects on the cell cycle, particularly after 48 h, which is consistent with its moderate activity against the MCF-7 cell line. On the other hand, screening of their antiplasmodial activities against the erythrocytic, hepatic, and gametocytic stages of the Plasmodium life cycle showed that dimeric harmiprime exerts powerful triple-stage antiplasmodial activity, while computational analysis showed its binding within the ATP binding site of PfHsp90.


Assuntos
Antimaláricos , Antineoplásicos , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Harmina , Antimaláricos/farmacologia , Antimaláricos/química , Antimaláricos/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Harmina/farmacologia , Harmina/química , Harmina/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Plasmodium falciparum/efeitos dos fármacos , Estrutura Molecular , Descoberta de Drogas , Relação Dose-Resposta a Droga , Linhagem Celular Tumoral , Testes de Sensibilidade Parasitária
7.
Bioorg Med Chem ; 104: 117714, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582046

RESUMO

4,9-diaminoacridines with reported antiplasmodial activity were coupled to different trans-cinnamic acids, delivering a new series of conjugates inspired by the covalent bitherapy concept. The new compounds were more potent than primaquine against hepatic stages of Plasmodium berghei, although this was accompanied by cytotoxic effects on Huh-7 hepatocytes. Relevantly, the conjugates displayed nanomolar activities against blood stage P. falciparum parasites, with no evidence of hemolytic effects below 100 µM. Moreover, the new compounds were at least 25-fold more potent than primaquine against P. falciparum gametocytes. Thus, the new antiplasmodial hits disclosed herein emerge as valuable templates for the development of multi-stage antiplasmodial drug candidates.


Assuntos
Antimaláricos , Cinamatos , Malária Falciparum , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Primaquina/farmacologia , Revelação , Plasmodium falciparum , Malária Falciparum/tratamento farmacológico , Plasmodium berghei
9.
Front Cell Infect Microbiol ; 13: 1307553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156320

RESUMO

Coronavirus disease 2019 (COVID-19) and malaria, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Plasmodium parasites, respectively, share geographical distribution in regions where the latter disease is endemic, leading to the emergence of co-infections between the two pathogens. Thus far, epidemiologic studies and case reports have yielded insufficient data on the reciprocal impact of the two pathogens on either infection and related diseases. We established novel co-infection models to address this issue experimentally, employing either human angiotensin-converting enzyme 2 (hACE2)-expressing or wild-type mice, in combination with human- or mouse-infective variants of SARS-CoV-2, and the P. berghei rodent malaria parasite. We now show that a primary infection by a viral variant that causes a severe disease phenotype partially impairs a subsequent liver infection by the malaria parasite. Additionally, exposure to an attenuated viral variant modulates subsequent immune responses and provides protection from severe malaria-associated outcomes when a blood stage P. berghei infection was established. Our findings unveil a hitherto unknown host-mediated virus-parasite interaction that could have relevant implications for disease management and control in malaria-endemic regions. This work may contribute to the development of other models of concomitant infection between Plasmodium and respiratory viruses, expediting further research on co-infections that lead to complex disease presentations.


Assuntos
COVID-19 , Coinfecção , Malária , Humanos , Camundongos , Animais , SARS-CoV-2 , COVID-19/complicações , Roedores , Coinfecção/complicações , Malária/parasitologia , Modelos Animais de Doenças
10.
NPJ Vaccines ; 8(1): 182, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996533

RESUMO

Immunization with Plasmodium sporozoites, either attenuated or administered under the cover of an antimalarial drug, can induce strong protection against malaria in pre-clinical murine models, as well as in human trials. Previous studies have suggested that whole-sporozoite (WSpz) formulations based on parasites with longer liver stage development induce higher protection, but a comparative analysis of four different WSpz formulations has not been reported. We employed a rodent model of malaria to analyze the effect of immunization dosage on the protective efficacy of WSpz formulations consisting of (i) early liver arresting genetically attenuated parasites (EA-GAP) or (ii) radiation-attenuated sporozoites (RAS), (iii) late arresting GAP (LA-GAP), and (iv) sporozoites administered under chemoprophylaxis, that are eliminated upon release into the bloodstream (CPS). Our results show that, unlike all other WSpz formulations, EA-GAP fails to confer complete protection against an infectious challenge at any immunization dosage employed, suggesting that a minimum threshold of liver development is required to elicit fully effective immune responses. Moreover, while immunization with RAS, LA-GAP and CPS WSpz yields comparable, dosage-dependent protection, protection by EA-GAP WSpz peaks at an intermediate dosage and markedly decreases thereafter. In-depth immunological analyses suggest that effector CD8+ T cells elicited by EA-GAP WSpz immunization have limited developmental plasticity, with a potential negative impact on the functional versatility of memory cells and, thus, on protective immunity. Our findings point towards dismissing EA-GAP from prioritization for WSpz malaria vaccination and enhance our understanding of the complexity of the protection elicited by these WSpz vaccine candidates, guiding their future optimization.

11.
Vaccine ; 41(51): 7618-7625, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38007342

RESUMO

Long-term protection against malaria remains one of the greatest challenges of vaccination against this deadly parasitic disease. Whole-sporozoite (WSp) malaria vaccine formulations, which target the Plasmodium parasite's pre-erythrocytic stages, include radiation-attenuated sporozoites (RAS), early- and late-arresting genetically-attenuated parasites (EA-GAP and LA-GAP, respectively), and chemoprophylaxis with sporozoites (CPS). Although all these four vaccine formulations induce protective immune responses in the clinic, data on the longevity of the antimalarial protection they afford remain scarce. We employed a mouse model of malaria to assess protection conferred by immunization with P. berghei (Pb)-based surrogates of these four WSp formulations over a 36-week period. We show that EA-GAP WSp provide the lowest overall protection against an infectious Pb challenge, and that while immunization with RAS and LA-GAP WSp elicits the most durable protection, the protective efficacy of CPS WSp wanes rapidly over the 36-week period, most notably at higher immunization dosages. Analyses of liver immune cells show that CD44hi CD8+ T cells in CPS WSp-immunized mice express increased levels of the co-inhibitory PD-1 and LAG-3 markers compared to mice immunized with the other WSp formulations. This indicates that memory CD8+ T cells elicited by CPS WSp immunization display a more exhausted phenotype, which may explain the rapid waning of protection conferred by the former. These results emphasize the need for a detailed comparison of the duration of protection of different WSp formulations in humans and suggest a more beneficial effect of RAS and LA-GAP WSp compared to EA-GAP or CSP WSp.


Assuntos
Vacinas Antimaláricas , Malária , Humanos , Animais , Camundongos , Plasmodium berghei/genética , Esporozoítos , Vacinas Atenuadas , Linfócitos T CD8-Positivos , Chumbo
12.
Bioorg Med Chem ; 94: 117468, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37696205

RESUMO

Malaria, one of the oldest parasitic diseases, remains a global health threat, and the increasing resistance of the malaria parasite to current antimalarials is forcing the discovery of new, effective drugs. Harmicines, hybrid compounds in which harmine/ß-carboline alkaloids and cinnamic acid derivatives are linked via an amide bond or a triazole ring, represent new antiplasmodial agents. In this work, we used a multiple linear regression technique to build a linear quantitative structure-activity relationship (QSAR) model, based on a group of 40 previously prepared amide-type (AT) harmicines and their antiplasmodial activities against erythrocytic stage of chloroquine-sensitive strain of P. falciparum (Pf3D7). After analysing the QSAR model, new harmicines were designed and synthesized: six amide-type, eleven carbamate-type and two ureido-type harmicines at the N-9 position of the ß-carboline core. Subsequently, we evaluated the antiplasmodial activity of the new harmicines against the erythrocytic and hepatic stages of the Plasmodium life cycle in vitro and their antiproliferative activity against HepG2 cells. UT harmicine (E)-1-(2-(7-methoxy-1-methyl-9H-pyrido[3,4-b]indol-9-yl)ethyl)-3-(3-(3-(trifluoromethyl)phenyl)allyl)urea at the N-9 position of the ß-carboline ring exhibited pronounced antiplasmodial activity against both the erythrocytic and the hepatic stages of the Plasmodium life cycle, accompanied by good selectivity towards Plasmodium.

13.
Analyst ; 148(17): 4053-4063, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37529888

RESUMO

Early and accurate detection of infection by pathogenic microorganisms, such as Plasmodium, the causative agent of malaria, is critical for clinical diagnosis and ultimately determines the patient's outcome. We have combined a polystyrene-based microfluidic device with an immunoassay which utilises Surface-Enhanced Raman Spectroscopy (SERS) to detect malaria. The method can be easily translated to a point-of-care testing format and shows excellent sensitivity and specificity, when compared to the gold standard for laboratorial detection of Plasmodium infections. The device can be fabricated in less than 30 min by direct patterning on shrinkable polystyrene sheets of adaptable three-dimensional microfluidic chips. To validate the microfluidic system, samples of P. falciparum-infected red blood cell cultures were used. The SERS-based immunoassay enabled the detection of 0.0012 ± 0.0001% parasitaemia in a P. falciparum-infected red blood cell culture supernatant, an ∼7-fold higher sensitivity than that attained by most rapid diagnostic tests. Our approach successfully overcomes the main challenges of the current Plasmodium detection methods, including increased reproducibility, sensitivity, and specificity. Furthermore, our system can be easily adapted for detection of other pathogens and has excellent properties for early diagnosis of infectious diseases, a decisive step towards lowering their high burden on healthcare systems worldwide.


Assuntos
Malária Falciparum , Malária , Parasitos , Plasmodium , Humanos , Animais , Poliestirenos , Plasmodium falciparum , Reprodutibilidade dos Testes , Malária/diagnóstico , Malária Falciparum/diagnóstico , Sensibilidade e Especificidade , Dispositivos Lab-On-A-Chip
14.
Future Med Chem ; 15(12): 1037-1048, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37458074

RESUMO

Aim: To test the antimicrobial effect of carbon monoxide-releasing molecules (CORMs) conjugated with azoles on different microorganisms. Methods & results: We used broth microdilution, checkerboard and cytotoxicity assays, as well as imaging, fluorescence and bioluminescence experiments to study [Re(CO)3(2,2'-bipyridyl)(Ctz)]+ (also known as ReBpyCtz). ReBpyCtz exhibits a low minimum inhibitory concentration value, increases the intracellular formation of reactive oxygen species and causes significant alterations on Staphylococcus aureus's membrane. ReBpyCtz is active against fungi, having a more prolonged fungicidal effect on Candida glabrata than clotrimazole and is selectively active on blood-stage malaria parasites, at a concentration that is not toxic to kidney epithelial cells. Conclusion: Conjugated CORMs have the potential to be active against different types of pathogens, thus constituting a promising class of broad-spectrum antimicrobials.


Assuntos
Anti-Infecciosos , Monóxido de Carbono , Monóxido de Carbono/farmacologia , Anti-Infecciosos/farmacologia , Células Epiteliais , Fungos , Testes de Sensibilidade Microbiana
15.
ChemMedChem ; 18(17): e202300264, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392377

RESUMO

A multistep and diversity-oriented synthetic route aiming at the A3 coupling/domino cyclization of o-ethynyl anilines, aldehydes and s-amines is described. The preparation of the corresponding precursors included a series of transformations, such as haloperoxidation and Sonogashira cross-coupling reactions, amine protection, desilylation and amine reduction. Some products of the multicomponent reaction underwent further detosylation and Suzuki coupling. The resulting library of structurally diverse compounds was evaluated against blood and liver stage malaria parasites, which revealed a promising lead with sub-micromolar activity against intra-erythrocytic forms of Plasmodium falciparum. The results from this hit-to-lead optimization are hereby reported for the first time.


Assuntos
Antimaláricos , Antimaláricos/farmacologia , Indóis , Aldeídos , Aminas , Compostos de Anilina , Ciclização , Catálise
16.
Eur J Med Chem ; 258: 115575, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37390511

RESUMO

A novel family of 4-aminoacridine derivatives was obtained by linking this heteroaromatic core to different trans-cinnamic acids. The 4-(N-cinnamoylbutyl)aminoacridines obtained exhibited in vitro activity in the low- or sub-micromolar range against (i) hepatic stages of Plasmodium berghei, (ii) erythrocytic forms of Plasmodium falciparum, and (iii) early and mature gametocytes of Plasmodium falciparum. The most active compound, having a meta-fluorocinnamoyl group linked to the acridine core, was 20- and 120-fold more potent, respectively, against the hepatic and gametocyte stages of Plasmodium infection than the reference drug, primaquine. Moreover, no cytotoxicity towards mammalian and red blood cells at the concentrations tested was observed for any of the compounds under investigation. These novel conjugates represent promising leads for the development of new multi-target antiplasmodials.


Assuntos
Aminoacridinas , Antimaláricos , Animais , Aminacrina , Antimaláricos/farmacologia , Mamíferos , Plasmodium berghei , Plasmodium falciparum , Primaquina
17.
Pharmaceutics ; 15(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36986868

RESUMO

The incidence rate of malaria and the ensuing mortality prompts the development of novel antimalarial drugs. In this work, the activity of twenty-eight Amaryllidaceae alkaloids (1-28) belonging to seven different structural types was assessed, as well as twenty semisynthetic derivatives of the ß-crinane alkaloid ambelline (28a-28t) and eleven derivatives of the α-crinane alkaloid haemanthamine (29a-29k) against the hepatic stage of Plasmodium infection. Six of these derivatives (28h, 28m, 28n and 28r-28t) were newly synthesized and structurally identified. The most active compounds, 11-O-(3,5-dimethoxybenzoyl)ambelline (28m) and 11-O-(3,4,5-trimethoxybenzoyl)ambelline (28n), displayed IC50 values in the nanomolar range of 48 and 47 nM, respectively. Strikingly, the derivatives of haemanthamine (29) with analogous substituents did not display any significant activity, even though their structures are quite similar. Interestingly, all active derivatives were strictly selective against the hepatic stage of infection, as they did not demonstrate any activity against the blood stage of Plasmodium infection. As the hepatic stage is a bottleneck of the plasmodial infection, liver-selective compounds can be considered crucial for further development of the malaria prophylactics.

18.
Pharmaceutics ; 15(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36986890

RESUMO

Block copolymer micelles (BCMs) can be used to improve the solubility of lipophilic drugs and increase their circulation half-life. Hence, BCMs assembled from MePEG-b-PCL were evaluated as drug delivery systems of gold(III) bis(dithiolene) complexes (herein AuS and AuSe) to be employed as antiplasmodial drugs. These complexes exhibited remarkable antiplasmodial activity against liver stages of the Plasmodiumberghei parasite, and low toxicity in a model of zebrafish embryos. To improve the complexes' solubility, BCMs were loaded with AuS, AuSe, and the reference drug primaquine (PQ). PQ-BCMs (Dh = 50.9 ± 2.8 nm), AuSe-BCMs (Dh = 87.1 ± 9.7 nm), and AuS-BCMs (Dh = 72.8 ± 3.1 nm) were obtained with a loading efficiency of 82.5%, 55.5%, and 77.4%, respectively. HPLC analysis and UV-Vis spectrophotometry showed that the compounds did not suffer degradation after encapsulation in BCMs. In vitro release studies suggest that AuS/AuSe-BCMs present a more controlled release compared with PQ-loaded BCMs. The antiplasmodial hepatic activity of the drugs was assessed in vitro and results indicate that both complexes present higher inhibitory activity than PQ, although encapsulated AuS and AuSe presented lower activity than their non-encapsulated counterparts. Nevertheless, these results suggest that the use of BCMs as delivery vehicles for lipophilic metallodrugs, particularly AuS and AuSe, could enable the controlled release of complexes and improve their biocompatibility, constituting a promising alternative to conventional antimalarial treatments.

20.
NPJ Vaccines ; 7(1): 163, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526627

RESUMO

Two malaria parasite species, Plasmodium falciparum (Pf) and P. vivax (Pv) are responsible for most of the disease burden caused by malaria. Vaccine development against this disease has focused mainly on Pf. Whole-sporozoite (WSp) vaccination, targeting pre-erythrocytic (PE) parasite stages, is a promising strategy for immunization against malaria and several PfWSp-based vaccine candidates are currently undergoing clinical evaluation. In contrast, no WSp candidates have been developed for Pv, mainly due to constraints in the production of Pv sporozoites in the laboratory. Recently, we developed a novel approach for WSp vaccination against Pf based on the use of transgenic rodent P. berghei (Pb) sporozoites expressing immunogens of this human-infective parasite. We showed that this platform can be used to deliver PE Pf antigens, eliciting both targeted humoral responses and cross-species cellular immune responses against Pf. Here we explored this WSp platform for the delivery of Pv antigens. As the Pv circumsporozoite protein (CSP) is a leading vaccine candidate antigen, we generated a transgenic Pb parasite, PbviVac, that, in addition to its endogenous PbCSP, expresses PvCSP under the control of a strictly PE promoter. Immunofluorescence microscopy analyses confirmed that both the PbCSP and the PvCSP antigens are expressed in PbviVac sporozoites and liver stages and that PbviVac sporozoite infectivity of hepatic cells is similar to that of its wild-type Pb counterpart. Immunization of mice with PbviVac sporozoites elicits the production of anti-PvCSP antibodies that efficiently recognize and bind to Pv sporozoites. Our results warrant further development and evaluation of PbviVac as a surrogate for WSp vaccination against Pv malaria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA