Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Diabetes Metab Res Rev ; 40(2): e3734, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37839040

RESUMO

CONTEXT: Mortality in type 2 diabetes is twice that of the normoglycemic population. Unravelling biomarkers that identify high-risk patients for referral to the most aggressive and costly prevention strategies is needed. OBJECTIVE: To validate in type 2 diabetes the association with all-cause mortality of a 14-metabolite score (14-MS) previously reported in the general population and whether this score can be used to improve well-established mortality prediction models. METHODS: This is a sub-study consisting of 600 patients from the "Sapienza University Mortality and Morbidity Event Rate" (SUMMER) study in diabetes, a prospective multicentre investigation on all-cause mortality in patients with type 2 diabetes. Metabolic biomarkers were quantified from serum samples using high-throughput proton nuclear magnetic resonance metabolomics. RESULTS: In type 2 diabetes, the 14-MS showed a significant (p < 0.0001) association with mortality, which was lower (p < 0.0001) than that reported in the general population. This difference was mainly due to two metabolites (histidine and ratio of polyunsaturated fatty acids to total fatty acids) with an effect size that was significantly (p = 0.01) lower in diabetes than in the general population. A parsimonious 12-MS (i.e. lacking the 2 metabolites mentioned above) improved patient discrimination and classification of two well-established mortality prediction models (p < 0.0001 for all measures). CONCLUSIONS: The metabolomic signature of mortality in the general population is only partially effective in type 2 diabetes. Prediction markers developed and validated in the general population must be revalidated if they are to be used in patients with diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Estudos Prospectivos , Metabolômica , Biomarcadores
2.
Diabetes Metab Res Rev ; 39(5): e3632, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36880127

RESUMO

BACKGROUND: Novel biomarkers of vascular disease in diabetes could help identify new mechanistic pathways. Osteocalcin, osteoprotegerin, and osteopontin are key molecules involved in bone and vascular calcification processes, both of which are compromised in diabetes. We aimed to evaluate possible associations of osteocalcin, osteoprotegerin, and osteopontin with cardiovascular disease (CVD) and diabetic retinopathy (DR) among people with type 2 diabetes (T2D). MATERIALS AND METHODS: Osteocalcin, osteoprotegerin, and osteopontin concentrations were measured at enrolment in 848 participants with T2D from the Sapienza University Mortality and Morbidity Event Rate (SUMMER) Study (ClinicalTrials.gov: NCT02311244). Logistic regression models and propensity score matching were used to assess possible associations of osteocalcin, osteoprotegerin, and osteopontin with a history of CVD and with evidence of any grade of DR adjusting for confounders. RESULTS: Previous CVD was reported in 139 (16.4%) participants, while 144 (17.0%) had DR. After adjusting for possible confounders, osteocalcin but not osteoprotegerin or osteopontin concentrations were associated with a history of CVD (Odds Ratio [OR] and 95% CI for one standard deviation (SD) increase in osteocalcin concentrations (natural log): 1.35 (1.06-1.72), p = 0.014). Associations with prevalent DR were seen for osteoprotegerin (OR for one SD increase in osteoprotegerin concentrations (natural log): 1.25 (1.01-1.55), p = 0.047) and osteopontin (OR for one SD increase in osteopontin concentrations (natural log): 1.25 (1.02-1.53), p = 0.022), but not osteocalcin. CONCLUSIONS: In T2D, higher serum osteocalcin concentrations are associated with macrovascular complications and higher osteoprotegerin and osteopontin concentrations with microvascular complications, suggesting that these osteokines might be involved in pathways directly related to vascular disease.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Doenças Vasculares , Humanos , Osteopontina , Osteocalcina , Biomarcadores , Retinopatia Diabética/epidemiologia , Retinopatia Diabética/etiologia
4.
Diabetes Metab ; 48(5): 101353, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35487478

RESUMO

AIM: This study investigated whether rare, deleterious variants in monogenic diabetes-genes are associated with early-onset type 2 diabetes (T2D). METHODS: A nested case-control study was designed from 9712 Italian patients with T2D. Individuals with age at diabetes onset ≤35 yrs (n = 300; cases) or ≥65 yrs (n = 300; controls) were selected and screened for variants in 27 monogenic diabetes-genes by targeted resequencing. Rare (minor allele frequency-MAF <1%) and possibly deleterious variants were collectively tested for association with early-onset T2D. The association of a genetic risk score (GRS) based on 17 GWAS-SNPs for T2D was also tested. RESULTS: When all rare variants were considered together, each increased the risk of early-onset T2D by 65% (allelic OR =1.64, 95% CI: 1.08-2.48, p = 0.02). Effects were similar when the 600 study participants were stratified according to their place of recruitment (Central-Southern Italy, 182 cases vs. 142 controls, or Rome urban area, 118 vs. 158, p for heterogeneity=0.53). Progressively less frequent variants showed increasingly stronger effects in the risk of early-onset T2D for those with MAF <0.001% (OR=6.34, 95% CI: 1.87-22.43, p = 0.003). One unit of T2D-GRS significantly increased the risk of early-onset T2D (OR 1.09, 95% CI: 1.01-1.18; p = 0.02). This association was stronger among rare variants carriers as compared to non-carriers (p = 0.02). CONCLUSION: Rare variants in monogenic-diabetes genes are associated with an increased risk of early-onset T2D, and interact with common T2D susceptibility variants in shaping it. These findings might help develop prediction tools to identify individuals at high risk of developing T2D in early adulthood.


Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Frequência do Gene , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único
7.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163144

RESUMO

Type 2 diabetes is characterized by impairment in insulin secretion, with an established genetic contribution. We aimed to evaluate common and low-frequency (1-5%) variants in nine genes strongly associated with insulin secretion by targeted sequencing in subjects selected from the extremes of insulin release measured by the disposition index. Collapsing data by gene and/or function, the association between disposition index and nonsense variants were significant, also after adjustment for confounding factors (OR = 0.25, 95% CI = 0.11-0.59, p = 0.001). Evaluating variants individually, three novel variants in ARAP1, IGF2BP2 and GCK, out of eight reaching significance singularly, remained associated after adjustment. Constructing a genetic risk model combining the effects of the three variants, only carriers of the ARAP1 and IGF2BP2 variants were significantly associated with a reduced probability to be in the lower, worst, extreme of insulin secretion (OR = 0.223, 95% CI = 0.105-0.473, p < 0.001). Observing a high number of normal glucose tolerance between carriers, a regression posthoc analysis was performed. Carriers of genetic risk model variants had higher probability to be normoglycemic, also after adjustment (OR = 2.411, 95% CI = 1.136-5.116, p = 0.022). Thus, in our southern European cohort, nonsense variants in all nine candidate genes showed association with better insulin secretion adjusted for insulin resistance, and we established the role of ARAP1 and IGF2BP2 in modulating insulin secretion.


Assuntos
Proteínas de Transporte/genética , Diabetes Mellitus Tipo 2/epidemiologia , Proteínas Ativadoras de GTPase/genética , Resistência à Insulina , Secreção de Insulina , Obesidade/fisiopatologia , Polimorfismo de Nucleotídeo Único , Proteínas de Ligação a RNA/genética , Adulto , Estudos de Coortes , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Feminino , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade
8.
J Clin Endocrinol Metab ; 107(3): 668-684, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34718610

RESUMO

CONTEXT: Genes causing familial forms of diabetes mellitus are only partially known. OBJECTIVE: We set out to identify the genetic cause of hyperglycemia in multigenerational families with an apparent autosomal dominant form of adult-onset diabetes not due to mutations in known monogenic diabetes genes. METHODS: Existing whole-exome sequencing (WES) data were used to identify exonic variants segregating with diabetes in 60 families from the United States and Italy. Functional studies were carried out in vitro (transduced MIN6-K8 cells) and in vivo (Caenorhabditis elegans) to assess the diabetogenic potential of 2 variants in the malate dehydrogenase 2 (MDH2) gene linked with hyperglycemia in 2 of the families. RESULTS: A very rare mutation (p.Arg52Cys) in MDH2 strongly segregated with hyperglycemia in 1 family from the United States. An infrequent MDH2 missense variant (p.Val160Met) also showed disease cosegregation in a family from Italy, although with reduced penetrance. In silico, both Arg52Cys and Val160Met were shown to affect MDH2 protein structure and function. In transfected HepG2 cells, both variants significantly increased MDH2 enzymatic activity, thereby decreasing the NAD+/NADH ratio-a change known to affect insulin signaling and secretion. Stable expression of human wild-type MDH2 in MIN6-K8 cell lines enhanced glucose- and GLP-1-stimulated insulin secretion. This effect was blunted by the Cys52 or Met160 substitutions. Nematodes carrying equivalent changes at the orthologous positions of the mdh-2 gene showed impaired glucose-stimulated insulin secretion. CONCLUSION: Our findings suggest a central role of MDH2 in human glucose homeostasis and indicate that gain of function variants in this gene may be involved in the etiology of familial forms of diabetes.


Assuntos
Glicemia/metabolismo , Hiperglicemia/genética , Malato Desidrogenase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Animais Geneticamente Modificados , Glicemia/análise , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Análise Mutacional de DNA , Feminino , Mutação com Ganho de Função , Humanos , Hiperglicemia/sangue , Insulina/análise , Insulina/metabolismo , Secreção de Insulina/genética , Ilhotas Pancreáticas , Malato Desidrogenase/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sequenciamento do Exoma
9.
Curr Opin Pharmacol ; 55: 157-164, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33271410

RESUMO

Diabetes diagnosed in adults is a highly heterogeneous disorder. It mostly consists of what is referred to as type 2 diabetes but also comprises other entities (i.e. different diseases), including latent autoimmune diabetes, late onset forms of monogenic diabetes and familial diabetes of the adulthood, which has recently been the source of new diabetogenes discovery. Notably, type 2 diabetes is itself heterogeneous as it includes subtypes with onset at the extremes of age and/or weight distributions characterized by different degree of hyperglycemia and cardiovascular risk as compared to common forms of type 2 diabetes occurring in middle-aged, overweight/obese individuals. Understanding whether these are different presentations of one, highly heterogeneous disease or separate nosological entities with different clinical trajectories and requiring different treatments is essential to effectively pursue the path of precision medicine.


Assuntos
Diabetes Mellitus Tipo 2 , Adulto , Idade de Início , Diabetes Mellitus Tipo 1 , Humanos
10.
Diabetes ; 69(10): 2206-2216, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651240

RESUMO

A chromosome 1q25 variant (rs10911021) has been associated with coronary heart disease (CHD) in type 2 diabetes. In human umbilical vein endothelial cells (HUVECs), the risk allele "C" is associated with lower expression of the adjacent gene GLUL encoding glutamine synthase, converting glutamic acid to glutamine. To further investigate the mechanisms through which this locus affects CHD risk, we measured 35 intracellular metabolites involved in glutamic acid metabolism and the γ-glutamyl cycle in 62 HUVEC strains carrying different rs10911021 genotypes. Eight metabolites were positively associated with the risk allele (17-58% increase/allele copy, P = 0.046-0.002), including five γ-glutamyl amino acids, ß-citryl-glutamate, N-acetyl-aspartyl-glutamate, and ophthalmate-a marker of γ-glutamyl cycle malfunction. Consistent with these findings, the risk allele was also associated with decreased glutathione-to-glutamate ratio (-9%, P = 0.012), decreased S-lactoylglutathione (-41%, P = 0.019), and reduced detoxification of the atherogenic compound methylglyoxal (+54%, P = 0.008). GLUL downregulation by shRNA caused a 40% increase in the methylglyoxal level, which was completely prevented by glutamine supplementation. In summary, we have identified intracellular metabolic traits associated with the 1q25 risk allele in HUVECs, including impairments of the γ-glutamyl cycle and methylglyoxal detoxification. Glutamine supplementation abolishes the latter abnormality, suggesting that such treatment may prevent CHD in 1q25 risk allele carriers.


Assuntos
Doença das Coronárias/metabolismo , Células Endoteliais/metabolismo , Cromossomos Humanos Par 1/metabolismo , Doença das Coronárias/genética , Dipeptídeos , Endoftalmite/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glutamatos/metabolismo , Glutamina/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Aldeído Pirúvico/metabolismo , RNA Interferente Pequeno/metabolismo
11.
Diabetes ; 69(4): 771-783, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31974142

RESUMO

The cardiovascular benefits of fibrates have been shown to be heterogeneous and to depend on the presence of atherogenic dyslipidemia. We investigated whether genetic variability in the PPARA gene, coding for the pharmacological target of fibrates (PPAR-α), could be used to improve the selection of patients with type 2 diabetes who may derive cardiovascular benefit from addition of this treatment to statins. We identified a common variant at the PPARA locus (rs6008845, C/T) displaying a study-wide significant influence on the effect of fenofibrate on major cardiovascular events (MACE) among 3,065 self-reported white subjects treated with simvastatin and randomized to fenofibrate or placebo in the ACCORD-Lipid trial. T/T homozygotes (36% of participants) experienced a 51% MACE reduction in response to fenofibrate (hazard ratio 0.49; 95% CI 0.34-0.72), whereas no benefit was observed for other genotypes (P interaction = 3.7 × 10-4). The rs6008845-by-fenofibrate interaction on MACE was replicated in African Americans from ACCORD (N = 585, P = 0.02) and in external cohorts (ACCORD-BP, ORIGIN, and TRIUMPH, total N = 3059, P = 0.005). Remarkably, rs6008845 T/T homozygotes experienced a cardiovascular benefit from fibrate even in the absence of atherogenic dyslipidemia. Among these individuals, but not among carriers of other genotypes, fenofibrate treatment was associated with lower circulating levels of CCL11-a proinflammatory and atherogenic chemokine also known as eotaxin (P for rs6008845-by-fenofibrate interaction = 0.003). The GTEx data set revealed regulatory functions of rs6008845 on PPARA expression in many tissues. In summary, we have found a common PPARA regulatory variant that influences the cardiovascular effects of fenofibrate and that could be used to identify patients with type 2 diabetes who would derive benefit from fenofibrate treatment, in addition to those with atherogenic dyslipidemia.


Assuntos
Diabetes Mellitus Tipo 2/genética , Dislipidemias/tratamento farmacológico , Fenofibrato/uso terapêutico , Hipolipemiantes/uso terapêutico , PPAR alfa/genética , Polimorfismo de Nucleotídeo Único , Quimiocinas/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dislipidemias/sangue , Dislipidemias/complicações , Dislipidemias/genética , Feminino , Genótipo , Humanos , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Farmacogenética , Resultado do Tratamento
12.
Acta Diabetol ; 57(5): 589-596, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31863320

RESUMO

AIMS: Familial partial lipodystrophy (FPLD) is a rare autosomal dominant disorder, mostly due to mutations in lamin A (LMNA) or in peroxisome proliferator-activated receptor gamma (PPARG) genes. In the present study, we aimed to identify and functionally characterize the genetic defect underlying FPLD in an Italian family presenting with several affected individuals in three consecutive generations. METHODS: Mutational screening by direct Sanger sequencing has been carried out on both LMNA and PPARG genes. In silico analyses and functional in vitro studies on transfected cell lines have been also performed to evaluate the biological impact of the identified mutation. RESULTS: We identified a novel PPARG missense mutation (i.e., PPARγ2 Ile354Val) segregating with FPLD in the study family. In silico analyses and in vitro experiments showed that probably altering the PPARγ2 ligand binding domain conformation, the Ile354Val aminoacid change leads to a significant reduction (i.e., ~ 30-35%) of transcriptional activity in the mutant receptor, with no evidences of a dominant negative effect on the wild-type receptor. CONCLUSIONS: Our present data extend the spectrum of PPARG mutations responsible for FPLD3 and reinforce the notion that even loss of function mutations affecting transcriptional activity to an extent lower than that observed in the case of haploinsufficiency are able to cause a severe FPLD3 phenotype.


Assuntos
Lipodistrofia Parcial Familiar/genética , Mutação com Perda de Função , Mutação de Sentido Incorreto , PPAR gama/genética , Feminino , Genes Dominantes , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/metabolismo , Masculino , Pessoa de Meia-Idade , PPAR gama/metabolismo , Linhagem
13.
Cardiovasc Diabetol ; 18(1): 102, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409409

RESUMO

BACKGROUND: Myocardial infarction is the main mortality cause in patients with type 2 diabetes (T2DM). Endothelial dysfunction due to reduced bioavailability of nitric oxide (NO) is an early step of atherogenesis. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and it is metabolized by the enzymes dimethylarginine dimethylaminohydrolase (DDAH) 1 and 2. The functional variant rs9267551 C, in the promoter region of DDAH2, has been linked to increased DDAH2 expression, and lower ADMA plasma levels, and was associated with lower risk of coronary artery disease in large-scale genome-wide association studies (GWAS) performed in the general population. However, it is unknown whether this association holds true in T2DM patients. To address this issue, we investigated whether rs9267551 is associated with risk of myocardial infarction in two cohorts of T2DM patients. METHODS: SNP rs9267551 was genotyped in 1839 White T2DM patients from the Catanzaro Study (CZ, n = 1060) and the Gargano Heart Study-cross sectional design (GHS, n = 779). Cases were patients with a previous myocardial infarction, controls were asymptomatic patients with neither previous myocardial ischemia nor signs of it at resting and during a maximal symptom limited stress electrocardiogram. RESULTS: Carriers of allele rs9267551 C showed a dose dependent reduction in the risk of myocardial infarction [(CZ = OR 0.380, 95% CI 0.175-0.823, p = 0.014), (GHS = 0.497, 0.267-0.923, p = 0.027), (Pooled = 0.458, 0.283-0.739, p = 0.001)] which remained significant after adjusting for sex, age, BMI, smoking, HbA1c, total cholesterol HDL, and triglyceride levels [(CZ = 0.307, 0.106-0.885, p = 0.029), (GHS = 0.512, 0.270-0.970, p = 0.040), (Pooled = 0.458, 0.266-0.787, p = 0.005)]. CONCLUSIONS: We found that rs9267551 polymorphism is significantly associated with myocardial infarction in T2DM patients of European ancestry from two independent cohorts. It is possible that in subjects carrying the protective C allele less ADMA accumulates in endothelial cells causing vascular protection as a consequence of higher nitric oxide availability.


Assuntos
Amidoidrolases/genética , Diabetes Mellitus Tipo 2/genética , Infarto do Miocárdio/genética , Polimorfismo de Nucleotídeo Único , Idoso , Estudos Transversais , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/etnologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Incidência , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/etnologia , Fenótipo , Prevalência , Regiões Promotoras Genéticas , Medição de Risco , Fatores de Risco , População Branca/genética
14.
PLoS One ; 14(3): e0214122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30913280

RESUMO

Branched chain amino acids (BCAA) are essential elements of the human diet, which display increased plasma levels in obesity and regained particular interest as potential biomarkers for development of diabetes. To define determinants of insulin resistance (IR) we investigated 73 genes involved in BCAA metabolism or regulation by fine-scale haplotype mapping in two European populations with metabolic syndrome. French and Romanians (n = 465) were genotyped for SNPs (Affymetrix) and enriched by imputation (BEAGLE 4.1) at 1000 genome project density. Initial association hits detected by sliding window were refined (HAPLOVIEW 3.1 and PHASE 2.1) and correlated to homeostasis model assessment (HOMAIR) index, in vivo insulin sensitivity (SI) and BCAA plasma levels (ANOVA). Four genomic regions were associated with IR located downstream of MUT, AACS, SLC6A15 and PRKCA genes (P between 9.3 and 3.7 x 10-5). Inferred haplotypes up to 13 SNPs length were associated with IR (e.g. MUT gene with P < 4.9 x 10-5; Bonferroni 1.3 x 10-3) and synergistic to HOMAIR. SNPs in the same regions were also associated with one order of magnitude lower P values (e.g. rs20167284 in the MUT gene with P < 1.27 x 10-4) and replicated in Mediterranean samples (n = 832). In French, influential haplotypes (OR > 2.0) were correlated with in vivo insulin sensitivity (1/SI) except for SLC6A15 gene. Association of these genes with BCAA levels was variable, but influential haplotypes confirmed implication of MUT from BCAA metabolism as well as a role of regulatory genes (AACS and PRKCA) and suggested potential changes in transcriptional activity. These data drive attention towards new regulatory regions involved in IR in relation with BCAA and show the ability of haplotypes in phased DNA to detect signals complimentary to SNPs, which may be useful in designing genetic markers for clinical applications in ethnic populations.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Aminoácidos de Cadeia Ramificada/genética , Haplótipos , Resistência à Insulina/genética , Síndrome Metabólica/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Proteína Quinase C-alfa/genética , Adulto , Aminoácidos de Cadeia Ramificada/metabolismo , Feminino , Humanos , Masculino , Síndrome Metabólica/sangue , Pessoa de Meia-Idade
15.
Acta Diabetol ; 56(5): 515-523, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30656436

RESUMO

AIMS: Maturity Onset Diabetes of the Young (MODY) is a monogenic form of diabetes with autosomal dominant inheritance pattern. The diagnosis of MODY and its subtypes is based on genetic testing. Our aim was investigating MODY by means of next-generation sequencing in the Tunisian population. METHODS: We performed a targeted sequencing of 27 genes known to cause monogenic diabetes in 11 phenotypically suspected Tunisian patients. We retained genetic variants passing filters of frequency in public databases as well as their probable effects on protein structures and functions evaluated by bioinformatics prediction tools. RESULTS: Five heterozygous variants were found in four patients. They include two mutations in HNF1A and GCK that are the causative genes of the two most prevalent MODY subtypes described in the literature. Other possible mutations, including novel frameshift and splice-site variants were identified in ABCC8 gene. CONCLUSIONS: Our study is the first to investigate the clinical application of targeted next-generation sequencing for the diagnosis of MODY in Africa. The combination of this approach with a filtering/prioritization strategy made a step towards the identification of MODY mutations in the Tunisian population.


Assuntos
Diabetes Mellitus Tipo 2/genética , Sequenciamento de Nucleotídeos em Larga Escala , Adulto , Diabetes Mellitus Tipo 2/diagnóstico , Feminino , Mutação da Fase de Leitura , Testes Genéticos , Fator 1-alfa Nuclear de Hepatócito/genética , Heterozigoto , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Tunísia
16.
Oncotarget ; 9(79): 34911-34918, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30405883

RESUMO

Mortality rate is increased in type 2 diabetes (T2D). Low vitamin D levels are associated with increased mortality risk in T2D. In the general population, genetic variants affecting vitamin D metabolism (DHCR7 rs12785878, CYP2R1 rs10741657, GC rs4588) have been associated with serum vitamin D. We studied the association of these variants with serum vitamin D in 2163 patients with T2D from the "Sapienza University Mortality and Morbidity Event Rate (SUMMER) study in diabetes". Measurements of serum vitamin D were centralised. Genotypes were obtained by Eco™ Real-Time PCR. Data were adjusted for gender, age, BMI, HbA1c, T2D therapy and sampling season. DHCR7 rs12785878 (p = 1 x 10-4) and GC rs4588 (p = 1 x 10-6) but not CYP2R1 rs10741657 (p = 0.31) were significantly associated with vitamin D levels. One unit of a weighted genotype risk score (GRS) was strongly associated with vitamin D levels (p = 1.1 x 10-11) and insufficiency (<30 ng/ml) (OR, 95%CI = 1.28, 1.16-1.41, p = 1.1 x 10-7). In conclusion, DHCR7 rs12785878 and GC rs4588, but not CYP2R1 rs10741657, are significantly associated with vitamin D levels. When the 3 variants were considered together as GRS, a strong association with vitamin D levels and vitamin D insufficiency was observed, thus providing robust evidence that genes involved in vitamin D metabolism modulate serum vitamin D in T2D.

17.
Diabetes ; 67(1): 137-145, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28993341

RESUMO

Multigenerational diabetes of adulthood is a mostly overlooked entity, simplistically lumped into the large pool of type 2 diabetes. The general aim of our research in the past few years is to unravel the genetic causes of this form of diabetes. Identifying among families with multigenerational diabetes those who carry mutations in known monogenic diabetes genes is the first step to then allow us to concentrate on remaining pedigrees in which to unravel new diabetes genes. Targeted next-generation sequencing of 27 monogenic diabetes genes was carried out in 55 family probands and identified mutations verified among their relatives by Sanger sequencing. Nine variants (in eight probands) survived our filtering/prioritization strategy. After likelihood of causality assessment by established guidelines, six variants were classified as "pathogenetic/likely pathogenetic" and two as "of uncertain significance." Combining present results with our previous data on the six genes causing the most common forms of maturity-onset diabetes of the young allows us to infer that 23.6% of families with multigenerational diabetes of adulthood carry mutations in known monogenic diabetes genes. Our findings indicate that the genetic background of hyperglycemia is unrecognized in the vast majority of families with multigenerational diabetes of adulthood. These families now become the object of further research aimed at unraveling new diabetes genes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Adulto , Idoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Feminino , Quinases do Centro Germinativo , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-beta Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/genética , Humanos , Hiperglicemia/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Proteínas Serina-Treonina Quinases/genética , Transativadores/genética
19.
Eur J Paediatr Neurol ; 21(3): 587-590, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28254201

RESUMO

We present an atypical association of SCN2A epileptic encephalopathy with severe cortical dysplasia. SCN2A mutations are associated with epileptic syndromes from benign to extremely severe in absence of such macroscopic brain findings. Prenatal MRI (Magnetic Resonance Imaging) in a 32 weeks fetus, with US (Ultrasonography) diagnosis of isolated ventriculomegaly showed CNS (Central Nervous System) dysplasia characterized by lack of differentiation between cortical and subcortical layers, pachygyria and corpus callosum dysgenesis. Postnatal MRI confirmed the prenatal findings. On day 6 the baby presented a focal status epilepticus, partially controlled by phenobarbital, phenytoin, and levetiracetam. After three weeks a moderate improvement in seizure control has been achieved with carbamazepine. Exome sequencing detected a de novo heterozygous mutation in the SCN2A gene, encoding the αII-subunit of a sodium channel. The patient findings expand the phenotype spectrum of SCN2A mutations to epileptic encephalopathies with macroscopic brain developmental features.


Assuntos
Encefalopatias/tratamento farmacológico , Encefalopatias/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Convulsões/tratamento farmacológico , Convulsões/genética , Adulto , Encefalopatias/complicações , Carbamazepina/uso terapêutico , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/complicações , Malformações do Desenvolvimento Cortical/tratamento farmacológico , Malformações do Desenvolvimento Cortical/genética , Mutação , Neuroimagem , Fenótipo , Convulsões/complicações
20.
Nephrol Dial Transplant ; 32(10): 1718-1722, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27448670

RESUMO

BACKGROUND: UMOD variability has been associated at a genome-wide level of statistical significance with glomerular filtration rate (GFR) in Swedish individuals with type 2 diabetes (T2D; n = 4888). Whether this finding is extensible also to diabetic patients from other populations deserves further study. Our aim was to investigate the relationship between UMOD variability and GFR in patients with T2D from Italy. METHODS: Genotyping of the single nucleotide polymorphism (SNP) rs12917707 at the UMOD locus has been carried out in 3087 individuals from four independent Italian cohorts of patients with T2D by TaqMan allele discrimination. RESULTS: In none of the four study cohorts was rs12917707 significantly associated with GFR (P > 0.05 for all). Similar results were obtained when the four samples were pooled and analyzed together (ß = 0.83, P = 0.19). Such effect was strikingly smaller than that previously reported in Swedish patients (P for heterogeneity = 1.21 × 10-7). CONCLUSIONS: The previously reported strong association between rs12917707 and GFR in diabetic patients from Sweden is not observed in Italian diabetic patients, thus clearly pointing to a heterogeneous effect across the two different samples. This suggests that UMOD is a strong genetic determinant of kidney function in patients with T2D in some, but not all, populations.


Assuntos
Diabetes Mellitus Tipo 2/etnologia , Taxa de Filtração Glomerular , Polimorfismo de Nucleotídeo Único , Uromodulina/genética , População Branca/genética , Alelos , Estudos de Coortes , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatologia , Feminino , Genótipo , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Suécia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...