Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(7): 077001, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37656858

RESUMO

On-chip demagnetization refrigeration has recently emerged as a powerful tool for reaching microkelvin electron temperatures in nanoscale structures. The relative importance of cooling on-chip and off-chip components and the thermal subsystem dynamics are yet to be analyzed. We study a Coulomb blockade thermometer with on-chip copper refrigerant both experimentally and numerically, showing that dynamics in this device are captured by a first-principles model. Our work shows how to simulate thermal dynamics in devices down to microkelvin temperatures, and outlines a recipe for a low-investment platform for quantum technologies and fundamental nanoscience in this novel temperature range.

2.
Sci Rep ; 7: 45566, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374845

RESUMO

We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons directly to a bath of refrigerated nuclei, rather than cooling via phonons in the host lattice. Consequently, weak electron-phonon scattering becomes an advant- age. It allows the electrons to be cooled for an experimentally useful period of time to temperatures colder than the dilution refrigerator platform, the incoming electrical connections, and the host lattice. There are efforts worldwide to reach sub-millikelvin electron temperatures in nanostructures to study coherent electronic phenomena and improve the operation of nanoelectronic devices. On-chip magnetic cooling is a promising approach to meet this challenge. The method can be used to reach low, local electron temperatures in other nanostructures, obviating the need to adapt traditional, large demagnetisation stages. We demonstrate the technique by applying it to a nanoelectronic primary thermometer that measures its internal electron temperature. Using an optimised demagnetisation process, we demonstrate cooling of the on-chip electrons from 9 mK to below 5 mK for over 1000 seconds.

4.
Nat Commun ; 7: 10455, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26816217

RESUMO

Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to ∼ 10 mK the electrons are significantly overheated. Here we report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. The low operating temperature is attributed to an optimized design that incorporates cooling fins with a high electron-phonon coupling and on-chip electronic filters, combined with low-noise electronic measurements. By immersing a Coulomb blockade thermometer in the (3)He/(4)He refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7 mK and a trend to a saturated electron temperature approaching 3 mK. This work demonstrates how nanoelectronic samples can be cooled further into the low-millikelvin range.

5.
Sci Rep ; 5: 17398, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26620423

RESUMO

The control of electronic and thermal transport through material interfaces is crucial for numerous micro and nanoelectronics applications and quantum devices. Here we report on the engineering of the electro-thermal properties of semiconductor-superconductor (Sm-S) electronic cooler junctions by a nanoscale insulating tunnel barrier introduced between the Sm and S electrodes. Unexpectedly, such an interface barrier does not increase the junction resistance but strongly reduces the detrimental sub-gap leakage current. These features are key to achieving high cooling power tunnel junction refrigerators, and we demonstrate unparalleled performance in silicon-based Sm-S electron cooler devices with orders of magnitudes improvement in the cooling power in comparison to previous works. By adapting the junctions in strain-engineered silicon coolers we also demonstrate efficient electron temperature reduction from 300 mK to below 100 mK. Investigations on junctions with different interface quality indicate that the previously unexplained sub-gap leakage current is strongly influenced by the Sm-S interface states. These states often dictate the junction electrical resistance through the well-known Fermi level pinning effect and, therefore, superconductivity could be generally used to probe and optimize metal-semiconductor contact behaviour.

6.
Phys Rev Lett ; 110(9): 095503, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23496722

RESUMO

We study the relaxation of coherent acoustic phonon modes with frequencies up to 500 GHz in ultrathin free-standing silicon membranes. Using an ultrafast pump-probe technique of asynchronous optical sampling, we observe that the decay time of the first-order dilatational mode decreases significantly from ~4.7 ns to 5 ps with decreasing membrane thickness from ~194 to 8 nm. The experimental results are compared with theories considering both intrinsic phonon-phonon interactions and extrinsic surface roughness scattering including a wavelength-dependent specularity. Our results provide insight to understand some of the limits of nanomechanical resonators and thermal transport in nanostructures.


Assuntos
Acústica , Membranas Artificiais , Modelos Teóricos , Nanoestruturas/química , Fônons , Silício/química
7.
Phys Rev Lett ; 95(20): 206602, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16384078

RESUMO

We report on the effect of elastic intervalley scattering on the energy transport between electrons and phonons in many-valley semiconductors. We derive a general expression for the electron-phonon energy flow rate at the limit where elastic intervalley scattering dominates over diffusion. Electron heating experiments on doped n-type Si samples with electron concentrations (3.5-16.0) x 10(25) m(-3) are performed at sub-Kelvin temperatures. We find a good agreement between the theory and the experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...