Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(14)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34300858

RESUMO

Groundwater treatment residuals (GWTRs) are safe waste materials generated during drinking water treatment. GWTRs are mainly deposited in landfills, but the preferred solution should be reused or utilized for some components. To ensure proper sludge management, it is important to provide quality, chemical composition, and texture characteristics of GWTRs. Therefore, in this study, we aimed to investigate and compare the features of GWTRs collected from four water treatment plants. GWTRs were characterized by X-ray diffraction (XRD); scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS); Fourier transform infrared spectroscopy (FTIR); thermogravimetric, differential thermogravimetric, and differential thermal analysis (TG, DTG, and DTA, respectively); X-ray fluorescence (XRF); inductively coupled plasma optical emission spectrometry (ICP-OEP); specific surface area (SBET) measurement; and determination of the isoelectric point (pHIEP). According to the results, GWTRs are poor crystalline materials that are predominantly composed of ferrihydrite with minor calcite and quartz admixture. They formed heterogeneously mixed particles with irregular shapes. They were mainly composed of iron oxides (32-55%), silica (4-28%), calcium oxide (4-17%), and manganese oxides (0.3-4.0%). They were found to be mesoporous with a large specific surface area. Due to their composition and texture characteristics, GWTRs demonstrate good adsorption properties toward different compounds such as heavy metals and metalloids.

2.
Water Sci Technol ; 71(4): 638-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25746658

RESUMO

A technological investigation was carried out over a period of 2 years to evaluate surface water treatment technology. The study was performed in Poland, in three stages. From November 2011 to July 2012, for the first stage, flow tests with a capacity of 0.1-1.5 m³/h were performed simultaneously in three types of technical installations differing by coagulation modules. The outcome of the first stage was the choice of the technology for further investigation. The second stage was performed between September 2012 and March 2013 on a full-scale water treatment plant. Three large technical installations, operated in parallel, were analysed: coagulation with sludge flotation, micro-sand ballasted coagulation with sedimentation, coagulation with sedimentation and sludge recirculation. The capacity of the installations ranged from 10 to 40 m³/h. The third stage was also performed in a full-scale water treatment plant and was aimed at optimising the selected technology. This article presents the results of the second stage of the full-scale investigation. The critical treatment process, for the analysed water, was the coagulation in an acidic environment (6.5 < pH < 7.0) carried out in a system with rapid mixing, a flocculation chamber, preliminary separation of coagulation products, and removal of residual suspended solids through filtration.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Abastecimento de Água/normas , Filtração , Floculação , Polônia , Esgotos , Tecnologia , Instalações de Eliminação de Resíduos
3.
Water Sci Technol ; 71(4): 645-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25746659

RESUMO

Coagulation with sludge flotation and rapid filtration was selected as a surface water treatment technology to be optimised with a full-scale investigation, which was carried out in Poland between August and October 2013. The river water treated was characterized by low alkalinity, high-temperature variability and a high organic matter content. In the course of technological studies, the processes of coagulation with sludge flotation and rapid filtration were analysed. The studies were performed in the most adverse conditions for the applied technology i.e. during the period of algal bloom and subsequent decomposition of dead plankton. Throughout the study, the river water contained mainly dissolved organic matter, with occasional increases in the concentration of the undissolved fraction during algal bloom. The undissolved total organic carbon (TOC) fraction was effectively removed through coagulation while small doses of ClO2added prior to coagulation enhanced the process. The process of coagulation using high-coagulant doses at pH = 6.5 did not provide a reduction in the TOC value below the level of 4 mg C/L required for treated water. The effect was achieved by adding powdered activated carbon (PAC) before the filters. The coagulation products were characterised by low-hydraulic resistance which should be taken into account at the stage of water delivery to the filters, after flotation.


Assuntos
Filtração/métodos , Esgotos/química , Poluentes da Água/química , Purificação da Água/métodos , Coagulantes , Água Doce , Polônia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA